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Abstract 
Quantum imaging can potentially provide certain advantages over classical imaging. Thus far, 

however, the signal-to-noise ratios (SNRs) are poor; the resolvable pixel counts are low; biological 

organisms have not been imaged; birefringence has not been quantified. Here, we introduce 

quantum imaging by coincidence from entanglement (ICE). Utilizing spatially and polarization 

entangled photon pairs, ICE exhibits higher SNRs, greater resolvable pixel counts, imaging of 

biological organisms, and ghost birefringence quantification; it also enables 25 times greater 

suppression of stray light than classical imaging. ICE can potentially empower quantum imaging 

towards new applications in life sciences and remote sensing. 

 

Introduction 
Since van Leeuwenhoek’s first microscope, optical imaging has been widely used to noninvasively 

investigate the structures and dynamics of various physical and biological systems1,2. The key 

advantage of optical imaging is that the interaction of non-ionizing light with molecules provides 

rich molecular information about biological samples. Aided by the convenience and compactness 

of optical systems, optical imaging has served as the workhorse for biological researchers and 

medical practitioners behind a wide variety of discoveries3. In the past two decades, advanced 

optical imaging techniques have been developed to allow super-resolution1,4 and high-speed5,6 

bioimaging. However, to achieve high resolution and high imaging speed, most optical imaging 
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techniques require intense illumination that can disrupt or damage the biological processes under 

investigation2. Low-intensity illumination may lead to a low signal-to-noise ratio (SNR) due to 

shot noise and stray light.  

 

Recently, to overcome the limitations of existing optical imaging techniques that rely on classical 

light sources, quantum imaging approaches that use correlated, entangled, or squeezed photons 

have been developed7–11. Compared with classical optical imaging, quantum imaging has the 

following advantages12. First, the classical shot-noise limit can be broken, allowing for sub-shot-

noise (SSN) imaging under low-intensity illumination11,13–17. Second, stray light can be 

suppressed10,18,19. Third, super-resolution imaging beyond the diffraction limit can be enabled8,20–

25. Empowered by these advantages, quantum imaging has been employed to investigate biological 

specimens8,11,26, which have complex structures and may be susceptible to photobleaching and 

thermal damage. Despite the advantages, quantum images of biological specimens reported to date 

still suffer a low SNR because (1) the conditions required to achieve SSN are stringent13,15–17,27 

and (2) the SNRs in most quantum imaging approaches are low10,12,19. Moreover, existing quantum 

imaging approaches usually have low resolvable pixel counts (i.e., the ratios of the field of view 

(FOV) to the spatial resolution)7–11 and thus are not suited for practical biological studies, which 

often demand systematic investigation of multiple parts in a biological system with an FOV across 

a whole organism. Finally, quantum imaging techniques so far only measure transmittance 

(absorption) or phase contrast, whereas classical techniques support additional contrast such as 

birefringence1,2,28.  

 

Here we present ICE, a higher-SNR, greater-resolvable-pixel-count, and birefringence-sensitive 

quantum imaging technique that generates high-quality images of biological specimens. Under 

low-intensity illumination, ICE employs a new SSN algorithm that utilizes the covariance of the 

raw images to achieve a higher SNR than the classical counterpart. Concurrently, ICE substantially 

increases the SNR over existing quantum imaging techniques by accommodating multiple spatial 

modes of the entangled photon pairs in each pixel, where a single spatial mode is constrained by 

the diffraction limit of the system29,30. The spatial resolution of ICE is determined by both the 

signal and idler photons through a quantum effect named “entanglement pinhole”. In the 

entanglement pinhole effect, when an entangled photon pair is captured concurrently by two 
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detectors, one detector functions non-classically as a pinhole on the object being imaged by the 

other detector. Further, ICE increases the resolvable pixel counts indefinitely through raster 

scanning and is 25 times more resilient to stray light than classical imaging. Consequently, ICE 

enables quantum imaging of whole organ (mouse brain) slices and organisms (zebrafish) with an 

FOV of up to 7 mm × 4 mm, and can be operated in the presence of ambient lighting, thus suitable 

for practical biological studies. Finally, ICE exploits the polarization entanglement of the photon 

pairs for ghost birefringence imaging, where the birefringence properties of an object can be 

remotely and instantly measured without changing the polarization states of the photons incident 

on the object. The quantum advantages of ICE, therefore, enable the observation of biological 

specimens under conditions that cannot be satisfied with classical imaging, as well as the remote 

sensing of birefringence. 

 

Results 
Sub-shot-noise quantum imaging using multi-mode entangled photons 

In ICE (Fig. 1, details in Methods), we use two β-barium borate (BBO) nonlinear crystals with 

perpendicularly aligned optical axes to produce hyperentangled photon pairs, which are 

simultaneously entangled in spatial mode, polarization, and energy31,32, through the type-I 

spontaneous parametric down-conversion (SPDC) process. Most quantum imaging techniques 

reported to date evenly distribute the spatial modes of entangled photons across multi-pixel 

cameras10,13,19,33,34, leading to a small number of spatial modes per pixel, a low coincidence rate, 

and, consequently, a low SNR in the image. In comparison, ICE increases the coincidence rate and 

SNR of quantum images by directly focusing the multi-mode SPDC beam onto the object, resulting 

in substantially more spatial modes in each pixel. We record the signal (𝑁𝑁𝑠𝑠 ), idler (𝑁𝑁𝑖𝑖 ), and 

coincidence (𝑁𝑁𝑐𝑐 ) counts from the two single-photon counting modules (SPCMs) while raster 

scanning the object through the focused SPDC beam to image the transmittance of the object. 

Whereas 𝑁𝑁𝑠𝑠 and 𝑁𝑁𝑐𝑐 provide classical and quantum (ICE) images of the object, respectively, 𝑁𝑁𝑖𝑖 can 

further improve the SNR of the images through SSN signal retrieval using our covariance-over-

variance (CoV) algorithm (Supplementary Note 1, Supplementary Figs. 1 and 2). Compared with 

state-of-the-art SSN methods such as ratio and optimized subtraction15,17,27, our CoV algorithm 

achieves higher SNRs for both classical (𝑁𝑁𝑠𝑠) and quantum (𝑁𝑁𝑐𝑐) imaging, as demonstrated through 

simulations (Supplementary Fig. 3) and experiments (Supplementary Fig. 4).  
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Fig. 1 Experimental setup. 

Setup schematics. CW, continuous wave; GL, Glan–Laser polarizer; HWP, half-wave plate; QP, 

quartz plate; BBO, β-barium borate crystals; LPF, long-pass filter; PBS, polarizing beam splitter; 

BPF, band-pass filter; SPCM, single-photon counting module. Inset, illustration of the 

entanglement pinhole.  

 

Despite the higher coincidence rate and SNR, acquiring images by raster scanning a multi-mode 

beam is generally undesired in classical imaging, as the multi-mode beam leads to a broad point 

spread function (PSF) and consequently a poor spatial resolution. However, as shown in the inset 

of Fig. 1, the spatially entangled photon pairs in ICE enable a quantum effect named “entangled 

pinhole,” where the detector in the idler arm functions as a pinhole on the object in the signal arm 

(Supplementary Note 2, Supplementary Fig. 5). Relying on the true coincidences from spatially 

entangled photons (Supplementary Note 3, Supplementary Fig. 6), the entanglement pinhole filters 

out a portion of the spatial modes in the SPDC beam (Supplementary Fig. 7) and improves spatial 

resolution and depth of field (DOF) over classical imaging. As shown in Fig. 2a, the classical 

image of a US Air Force (USAF) resolution target can only resolve groups 4 and 5, whereas ICE 

can clearly resolve groups 6 and 7. Further, ICE maintains higher resolution over a long axial 

distance (Fig. 2b). To quantify the resolution and DOF experimentally, we acquired the edge 

spread functions (ESFs) of the images at different z positions. We then computed the line spread 

functions (LSFs) and their full width at half maximum (FWHM) to estimate the spatial resolutions 

(Methods). As shown in Fig. 2c, ICE has finer resolution than classical imaging from 𝑧𝑧 = −0.3 

mm to 𝑧𝑧 = 0 mm. To calculate the DOF of the system, we repeated the same resolution analysis 
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with a finer step size (10 µm) through approximately 700 µm along the z-axis (Fig. 2d). To align 

the foci, the curve for ICE has been shifted to the right by 43 µm. By fitting the experimental data, 

the focal resolutions of classical imaging and ICE are determined to be 14.4 ± 0.6 µm and 10.4 ± 

0.4 µm, respectively, demonstrating that ICE improves the resolution by 38% over classical 

imaging; the DOFs, on the other hand, are determined to be 92 ± 2 µm and 95 ± 2 µm for classical 

imaging and ICE, respectively.  

 

 
Fig. 2 Effect of the entanglement pinhole on ICE.  

a,b, Classical imaging and ICE of a USAF resolution target at focus (a) and at different z positions 

(b), where 𝑧𝑧 = 0 mm denotes the focus of classical imaging. c, Edge spread functions (ESFs), line 

spread functions (LSFs), and spatial resolutions measured at different z positions. The ESFs were 

fitted from the profiles of the yellow dotted lines in a. The means and standard errors of the 

resolution are shown on the right. d, Resolution versus z for classical imaging and ICE. Dots 
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represent experimental measurements. Solid and dash-dotted lines denote fits. Norm., normalized. 

Scale bars, 50 µm.  

 

Compared with existing quantum imaging techniques that have been typically demonstrated with 

thin biological samples7–11 (e.g., < 10 µm), ICE provides a larger DOF, thus enabling the 

observation of thick objects. Here, we imaged 500-µm thick agarose with randomly embedded 

carbon fibers of 6 µm diameter each. As shown in Supplementary Fig. 8a, ICE can resolve the 

carbon fibers better than classical imaging throughout an axial range of 300 µm. The profiles along 

the yellow dashed lines demonstrate ICE’s ability to resolve three closely located fibers that cannot 

be clearly distinguished classically. ICE has imaged all targets in the object more clearly due to 

both the higher spatial resolution and the large DOF over the classical counterpart. Specifically, 

comparing the averages of the 3D stacks acquired classically and through ICE (Supplementary Fig. 

8b), one can see that, within a 3D volume of 1000 × 1000 × 300 µm3, the carbon fibers in the ICE 

stack are clearly better resolved and have sharper edges than those in the classical stack.  

 

Quantum imaging of biological organisms in the presence of stray light 

By raster scanning the object, ICE provides an FOV that can be extended indefinitely. We imaged 

a slice of a whole organ (the cerebellum of a mouse brain) with a 7 mm × 4 mm FOV, whose 

anatomical structures are annotated in Supplementary Fig. 9a. The ICE image (Supplementary Fig. 

9b) outperforms the classical counterpart (Supplementary Fig. 9a) with a higher resolution, as seen 

in the two regions of interest (ROIs) in Supplementary Figs. 9c and e. Compared with the line 

profiles of the classical images (Supplementary Figs. 9d and f), the narrower trenches and peaks 

in the ICE profiles confirm an improved resolution across the large FOV. 

 

In addition to the large FOV, ICE also demonstrates robust stray light resistance due to coincidence 

detection. To quantify ICE’s resilience to ambient lighting, an LED was added to the system to 

introduce stray light (Supplementary Fig. 10). We acquired classical and ICE images of a 

biological organism, i.e., an agarose-embedded zebrafish, in a 3.5 mm × 2.3 mm FOV while the 

LED was randomly turned on and off to simulate randomly fluctuating ambient light (Fig. 3). The 

zebrafish was positioned such that its torso was oblique to the imaging plane (Supplementary Fig. 

11). As shown in Fig. 3a, while the classical imaging is severely degraded by the stray light, ICE 
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is almost unaffected. We further quantify the robustness of ICE to stray light by acquiring a series 

of images of carbon fibers under different stray light intensities (Fig. 3b). Using the images 

acquired without the stray light as the ground truth, we calculated the structural similarity index 

measure (SSIM) of each image to quantify the degradation of the image quality due to stray light35 

(Methods). The SSIM ranges from 0 to 1, where higher values indicate less degradation. The SSIM 

versus the stray light optical power is plotted in Fig. 3c. In accordance with the images in Fig. 3b, 

the classical images degrade quickly with an LED optical power above 0.1 mW, while ICE 

maintains a high SSIM even with an LED optical power above 1 mW. To simplify the comparison, 

we use an order-of-magnitude degradation (SSIM = 0.1) as a threshold to find the corresponding 

LED optical powers, found as 0.18 mW and 4.41 mW for the classical imaging and ICE, 

respectively. Therefore, ICE suppresses stray light 25 times more effectively than classical 

imaging. The advantage of ICE can also be seen in the difference between the two SSIM curves, 

i.e., ∆SSIM, shown in Fig. 3c. This advantage of ICE is attributed to coincidence detection, which 

is disturbed only by accidental coincidence counts. Despite its sufficient intensity to degrade a 

classical image, stray light acts as an uncorrelated source, causing negligible coincidence counts. 

 

 
Fig. 3 ICE in the presence of stray light.  

a, Classical and ICE images of a whole zebrafish in the presence of stray light. The pseudo colors 
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encode the z positions of the sample. Scale bars, 200 µm. b, Classical and ICE images of carbon 

fibers acquired at different stray light optical powers. Scale bars, 100 µm. c, Top, structural 

similarity index measure (SSIM) calculated between the images in b and the ones without the stray 

light. Black dashed line, a threshold (SSIM = 0.1) used to quantify the robustness of ICE and 

classical imaging. Bottom, difference between the SSIM curves for ICE and classical imaging. 

 

Ghost birefringence imaging through polarization entanglement 

Whereas most existing quantum imaging techniques rely on the spatial entanglement of SPDC 

photon pairs7,13,17,19, quantum imaging modalities utilizing polarization entanglement, such as the 

quantum holography10, have been developed recently. The polarization entanglement of the SPDC 

photon pairs in our system can be characterized by Bell’s test36,37 (Supplementary Note 4, 

Supplementary Fig. 12). With an 𝑆𝑆 value of 2.78 ± 0.01 > 2, our system shows a substantial 

violation of the Clauser–Horne–Shimony–Holt (CHSH) inequality38, demonstrating strong 

polarization entanglement32. By using hyperentangled photon pairs that are simultaneously 

entangled in spatial mode and polarization31,32, ICE measures the birefringence properties of an 

object without changing the polarization states of the photons incident on the object. 

 

We evaluated the ghost birefringence imaging capability of ICE by imaging a biological 

organism—a whole zebrafish embedded in agarose. We kept the polarization of the signal photons 

incident on the object constant (𝛼𝛼 = 0°) while changing the polarization angles of the idler photons, 

which do not traverse the object, to four different angles (𝛽𝛽 = 0°, 45°, 90°, 135°). Whereas the 

four classical images exhibited little differences (Supplementary Fig. 13), the ICE images were 

substantially modulated by the birefringence properties of the zebrafish (Fig. 4a). Following the 

theory in Supplementary Note 5, the four ICE images could be used to calculate the transmittance, 

the angle of the principal refractive index (Fig. 4b), and the phase retardation between the two 

refractive index axes (Fig. 4c) of the zebrafish, providing additional biologically relevant 

information that has not been obtained with existing quantum imaging techniques. Furthermore, 

because of polarization entanglement, measuring the idler photon’s polarization state instantly 

determines the incident signal photon’s, thus allowing instant measurement of the object’s 

birefringence properties, regardless of its distance. With the capability to remotely and instantly 

measure the birefringence properties of an object by changing the polarization states of the photons 
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that do not probe the object, ICE can be used in remote sensing applications where the source is 

too far to be controlled in real time (Supplementary Fig. 14). 

 

 
Fig. 4 Ghost birefringence imaging of a whole zebrafish with ICE.  

a, ICE images acquired with a polarizer of a constant angle 𝛼𝛼 and a polarizer of a variable angle 

𝛽𝛽. b, Transmittance (T) and principal refractive index axis angle (pseudo colors) calculated using 

the ICE images in a. c, Transmittance (T) and phase retardation between the two refractive index 

axes (lines and pseudo colors) calculated using the ICE images in a. Scale bars, 200 µm. 

 

Discussion 
Although imaging by coincidence can be achieved with a classical source39, the SNR of the image 

will be substantially lower compared to that of ICE under the same illumination intensity 

(Supplementary Note 6, Supplementary Figs.15 and 16), and the advantages enabled by spatial 

and polarization entanglement, such as SSN performance and ghost birefringence imaging, will be 

unavailable. We also note that, despite the similarity in using spatially entangled photon pairs and 

detecting coincidence for imaging, ICE fundamentally differs from ghost imaging (GI)40 or 
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correlation plenoptic imaging (CPI)41 for the following reasons: (1) ICE generates a direct image 

of the object through raster scanning over a theoretically unlimited FOV, whereas GI and CPI 

provide an indirect, ghost image of the object through triggering a multi-pixel camera with a 

limited FOV; (2) The signal arm of ICE contributes to spatial resolution, whereas the signal arms 

of GI and CPI do not; (3) ICE images substantially more spatial modes per pixel than GI and CPI; 

(4) ICE exploits polarization entanglement in addition to the spatial entanglement used in GI and 

CPI (see Supplementary Note 7 and Supplementary Fig. 17 for detailed comparison).  

 

Despite the advantages, ICE has the following limitations. First, the pixel dwell time is currently 

1 s, limited by the low SPDC efficiency of the BBO crystal42. Second, due to the utilization of 

multi-mode SPDC beams, ICE has a lower spatial resolution compared to the Abbe limit of 

resolution1,2. These problems could be solved in the future by using a more powerful quantum 

source42. A strong entangled photon source with high coincidence rates could substantially 

improve the imaging speed, and the SPDC beam could be filtered to a single spatial mode for 

diffraction-limited imaging while maintaining a sufficient SNR. Third, the entanglement pinhole 

is a virtual pinhole that filters SPDC modes in coincidence detection. In practice, all the SPDC 

photons in the signal arm still transmit through the object, which undergoes an illumination 

intensity higher than the two-photon coincidence used for quantum imaging. Nevertheless, the 

photon flux of all the SPDC photons on the object is less than 20 kHz (Supplementary Fig. 16), 

which equals 4.9 × 10−15 W, an ultralow illumination intensity that is safe for photosensitive 

biological specimens.  

 

To conclude, we have experimentally demonstrated ICE using hyperentangled photon pairs, 

achieving high-quality quantum bioimaging with higher SNR, greater resolvable pixel counts, and 

ghost birefringence quantification. As showcased using the thick biological organism (whole 

zebrafish) and the whole organ (mouse brain) slice with an FOV substantially larger than those of 

existing quantum images (Supplementary Fig. 18, Supplementary Table 1), these features allow 

for systematic observations in complex biological specimens. Rather than competing with classical 

imaging, ICE offers complementary benefits and additional opportunities such as SSN 

performance, stray light resistance, and ghost birefringence quantification. With these benefits and 

opportunities, ICE is expected to find more applications in life sciences where low illumination 
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intensity, ambient lighting, or precise measurements are required, and in remote sensing where the 

source cannot be controlled in real time. 

 

Methods 
Experimental setup 

In our system (Fig. 1), a paired set of BBO crystals (5 × 5 × 0.5 mm3 each, PABBO5050-405(I)-

HA3, Newlight Photonics) was cut for type-I spontaneous parametric down-conversion (SPDC) at 

405 nm wavelength. The two crystals were mounted back-to-back with one crystal rotated by 90 

degrees about the normal axis to the incidence surface. The pump was a 405 nm continuous wave 

laser (LM-405-PLR-40-4K, Coherent) with an output power of 40 mW. A Glan–Laser polarizer 

(GL10-A, Thorlabs) and a half-wave plate (WPA03-H-405, Newlight Photonics) were used to 

adjust the pump laser beam to be linearly polarized at 45 degrees relative to the vertical axis. A 

quartz plate (QAT25100-A, Newlight Photonics) tilted about its vertically oriented optical axis 

was used to pre-compensate for the phase difference between the horizontal and vertical 

polarization components of the SPDC photons. The pump laser beam then passed through the BBO 

crystals and generated a ring of SPDC photons with a half opening angle of 3 degrees. A long-pass 

filter with a cut-on wavelength of 715 nm (LWPF1030-RG715, Newlight Photonics) was used to 

block the pump beam after the crystals. While the SPDC idler beam was directly sent to a half-

wave plate (WPA03-H-810, Newlight Photonics) for polarization selection, the signal beam, 

whose size was adjusted by an iris (ID20, Thorlabs), was focused via an objective lens (LI-20X, 

0.4 NA; LI-10X, 0.25 NA; LI-4X, 0.1 NA; Newport) onto a microscope slide. The microscope 

slide was mounted on a 3-axis motor (462-XYZ-M, each axis installed with an LTA-HS motorized 

actuator, Newport). The transmitted SPDC signal beam was collected by another objective lens of 

the same type and then sent to another half-wave plate (WPA03-H-810, Newlight Photonics) for 

polarization selection. The two half-wave plates were mounted on two motorized precision rotation 

mounts (PRM1Z8, Thorlabs), each followed by a polarizing beam splitter (PBS201, Thorlabs), an 

810 ± 30 nm band-pass filter (NBF810-30, Newlight Photonics), a collection lens (LA1131, 

Thorlabs), and a single-photon counting module (SPCM-AQRH-16, Excelitas Technologies). The 

two SPCMs were connected to a time controller (ID900-TCSPC-HR, ID Quantique) with a digital 

time resolution of 13 ps to measure both raw singles photon counts and coincidence counts. The 

time controller and the 3-axis motor were synchronized and controlled by a computer. While 
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motor-scanning the microscope slide holding the object, the raw singles counts of the SPDC signal 

beam and the coincidence counts of the signal and idler beams were used to form the classical and 

ICE images of the object, respectively. The pixel dwell time was 1 s. The whole setup was covered 

by a light-shielding box. 

 

Characterization of polarization entanglement 

The entanglement of the SPDC signal and idler photon pairs was evaluated using Bell’s test with 

the Clauser–Horne–Shimony–Holt (CHSH) inequality (Supplementary Note 4)36,37. Denoting the 

angles of the half-wave plates on the signal and idler paths as 𝛼𝛼 and 𝛽𝛽, respectively, we recorded 

the coincidence counts 𝑁𝑁(𝛼𝛼,𝛽𝛽) at each step with an acquisition time of 1 s and a coincidence 

detection window of 8 ns. The correlation value was calculated by 

𝐸𝐸(𝛼𝛼,𝛽𝛽) =
𝑁𝑁(𝛼𝛼,𝛽𝛽) + 𝑁𝑁(𝛼𝛼 + 90°,𝛽𝛽 + 90°) − 𝑁𝑁(𝛼𝛼 + 90°,𝛽𝛽) − 𝑁𝑁(𝛼𝛼,𝛽𝛽 + 90°)
𝑁𝑁(𝛼𝛼,𝛽𝛽) + 𝑁𝑁(𝛼𝛼 + 90°,𝛽𝛽 + 90°) + 𝑁𝑁(𝛼𝛼 + 90°,𝛽𝛽) + 𝑁𝑁(𝛼𝛼,𝛽𝛽 + 90°). 

The CHSH inequality was then evaluated at the angle pairs 𝛼𝛼 ∈ {0∘, 45∘} and 𝛽𝛽 ∈ {22.5∘, 67.5∘} 

based on the value of  

𝑆𝑆 = |𝐸𝐸(0°, 22.5°) − 𝐸𝐸(0°, 67.5°)| + |𝐸𝐸(45°, 22.5°) + 𝐸𝐸(45°, 67.5°)|. 

As shown in Supplementary Fig. 12, our system shows a strong violation of the CHSH inequity 

with 𝑆𝑆 = 2.78 ± 0.01 > 2  estimated by calculating the mean and standard error of 𝑆𝑆  values 

measured from 10 rounds of Bell’s tests.  

 

Sample preparation 

Four types of objects have been imaged. The wild-type zebrafish was fixed by 4% 

paraformaldehyde (PFA) solution five days post fertilization. After fixation, the zebrafish was 

washed 3-4 times using PBS in a fume hood prior to agarose embedding. The agarose-embedded 

zebrafish was mounted onto a glass slide and sealed with a coverslip to prevent dehydration during 

the experiment. To prepare the brain slice, a brain was obtained from a Swiss Webster mouse (Hsd: 

ND4, Harlan Laboratories) and fixed in 3.7% paraformaldehyde solution at room temperature for 

24 h. After paraffin embedding, coronal sections (10 µm thick) of the brain were cut. Standard 

hematoxylin and eosin (H&E) staining was performed on the sections, which were examined using 

a bright-field microscope (NanoZoomer, Hamamatsu) with a 20 × 0.67 NA objective lens. All 

animal procedures were approved by the Institutional Animal Care and Use Committee of 
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California Institute of Technology. We used a 2" × 2" positive 1951 USAF resolution target (58–

198, Edmund Optics) to quantify the spatial resolution and DOF of our system. To prepare the 

thick object, carbon fibers with a diameter of 6 µm were randomly embedded in a 4% agarose 

block (A-204-25, GoldBio) in 3D. A 500 µm thick section was created from the agarose block 

using a vibratome (VT1200S, Leica). Next, the section was placed onto a standard microscope 

glass slide and fixed by applying cyanoacrylate glue around the edge. A coverglass was put on top 

of the sample and sealed using epoxy glue to prevent dehydration of the agarose. 

 

Data acquisition and processing 

A custom-written LabVIEW (National Instruments) program was used to synchronize the raster 

scanning of the 3-axis motor with the data acquisition of the time controller and acquire the raw 

singles and coincidence counts of the two SPCMs. When acquiring 2D imaging data, the 

LabVIEW program raster scanned the x- and y-axis motors and converted the raw singles counts 

of the signal channel and coincidence counts into classical and ICE images, respectively. The 

images were displayed on screen and saved to the computer in tag image file format (TIF). For 

imaging thick objects, multiple 2D images each captured at a z-position were combined to form a 

3D stack. The TIF files were imported into MATLAB (MathWorks) and processed with custom-

written scripts. Depending on the objects being imaged, the images were rotated, cropped, or 

inverted before being used to extract line profiles or edge spread functions for estimating resolution 

and DOF. Additionally, to compensate for the low contrast between the brain structure and the 

background, the brain slice images were denoised by block-matching and 3D filtering43 followed 

by a variance-stabilizing transformation44.  

 

Measurements of resolution and depth of field  

To measure the spatial resolution of our system, the profile of a line along 𝑥𝑥 perpendicular to an 

edge in the USAF resolution target (e.g., the yellow dashed line in Fig. 2a) was extracted and fitted 

to an edge spread function (ESF) centered at 𝑥𝑥0, i.e., ESF(𝑥𝑥) = 𝑎𝑎 erf((𝑥𝑥 − 𝑥𝑥0)/𝑤𝑤) + 𝑏𝑏, where 𝑎𝑎 

and 𝑏𝑏 are coefficients and 𝑤𝑤 is the radius of the beam. A Gaussian line spread function (LSF) was 

obtained by taking the derivative of the ESF, i.e., LSF(𝑥𝑥) = 𝑑𝑑ESF(𝑥𝑥) 𝑑𝑑𝑥𝑥⁄ =

2𝑎𝑎 exp(− (𝑥𝑥 − 𝑥𝑥0)2 𝑤𝑤2⁄ ) �𝑤𝑤√𝜋𝜋�� . The resolution was estimated to be the FWHM of the LSF, i.e., 

ℛ = 2√ln 2𝑤𝑤. The mean value of the resolution was estimated to be 2√ln 2 times the fitted 𝑤𝑤, 
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and the standard error was calculated to be √ln 2 1.96⁄  times the 95% confidence interval of the 

fitted 𝑤𝑤. To measure the DOF of our system, resolution, ℛ, was estimated at each z position (e.g., 

Fig. 2d). The curves were fitted for 𝑧𝑧𝑅𝑅  to a hyperbolic function, i.e., ℛ(𝑧𝑧) =

ℛ0�1 + (𝑧𝑧 − 𝑧𝑧0)2 𝑧𝑧𝑅𝑅2⁄ , where ℛ0 is the focal resolution and 𝑧𝑧𝑅𝑅 is the Rayleigh length. The mean 

DOF was estimated to be 2𝑧𝑧𝑅𝑅, and the standard error was estimated to be 1/1.96 times the 95% 

confidence interval of the fitted 𝑧𝑧𝑅𝑅. 

 

Imaging with stray light 

A white LED (MNWHL4, Thorlabs) powered by an LED driver (DC2200, Thorlabs) was used to 

randomly generate stray light during imaging, as shown in Supplementary Fig. 10. The LED driver 

was externally triggered by an analog output device (PCI-6711, National Instruments) installed on 

the computer. While raster scanning the object prepared on the microscope slide, at each pixel, the 

LabVIEW program generated a random number uniformly distributed between 0 and 1 to 

determine whether to trigger the white LED to output stray light. If the random number was less 

than 0.2, the LED was triggered to generate stray light; otherwise, no stray light would be 

generated. Therefore, approximately 20% of the pixels would be disrupted by stray light. To 

evaluate how robust the classical imaging and ICE were against stray light, we acquired images 

under different stray light optical powers. We calculated the structural similarity index measure 

(SSIM) between each image and the ground truth at zero stray light by SSIM =

4𝜇𝜇1𝜇𝜇2𝜎𝜎12 �(𝜇𝜇12 + 𝜇𝜇22)(𝜎𝜎12 + 𝜎𝜎22)�⁄ , where 𝜇𝜇𝑖𝑖 and 𝜎𝜎𝑖𝑖2 (𝑖𝑖 = 1 or 2) are the average and variance of 

each image, respectively, and 𝜎𝜎12 is the covariance of the two images35. 

 

Data availability 
All data used in this study are available from the corresponding author upon reasonable request. 

 

Code availability 
All custom codes used in this study are available from the corresponding author upon reasonable 

request. 
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Supplementary Note 1 Sub-shot-noise signal retrieval in ICE 

Each round of ICE acquisition generates three images: the signal image 𝑁𝑁𝑠𝑠(𝒓𝒓), the idler image 

𝑁𝑁𝑖𝑖(𝒓𝒓), and the coincidence image 𝑁𝑁𝑐𝑐(𝒓𝒓). 𝑁𝑁𝑠𝑠(𝒓𝒓) and 𝑁𝑁𝑖𝑖(𝒓𝒓) contain photon counts from both SPDC 

photon pairs (whose averaged value is denoted as 𝜇𝜇SPDC) and stray light (whose averaged value is 

denoted as 𝜇𝜇stray ). For simplicity, we assume the signal and idler detectors have the same 

background light intensity and detection efficiency, denoted as 𝜂𝜂. 

 

The imaging of an object here measures its transmittance 𝑇𝑇(𝒓𝒓). Although the following derivation 

applies to both 𝑁𝑁𝑠𝑠 and 𝑁𝑁𝑐𝑐, we use 𝑁𝑁𝑠𝑠 as an example. Classically, the transmittance is estimated as 

𝑇𝑇0(𝒓𝒓) =
𝑁𝑁𝑠𝑠(𝒓𝒓)
𝑁𝑁𝑠𝑠0(𝒓𝒓)

, (S1) 

where 𝑁𝑁𝑠𝑠0  denotes the signal image when the object is absent. In ICE, we estimate 𝑁𝑁𝑠𝑠0  using 

�𝑁𝑁𝑠𝑠b(𝒓𝒓)�𝒓𝒓, where 𝑁𝑁𝑠𝑠b denotes a background region of the 𝑁𝑁𝑠𝑠 image outside the target, and ⟨… ⟩𝒓𝒓 

denotes averaging over spatial locations. 

 

By using the correlation between the SPDC photon pairs, two types of sub-shot-noise (SSN) 

algorithms have been adopted to enhance the SNR of the transmittance measurements. The first 

type relies on the ratio of the two images, where the object’s transmittance is estimated as27,45 

𝑇𝑇1(𝒓𝒓) =
𝑁𝑁𝑠𝑠(𝒓𝒓)
𝑁𝑁𝑖𝑖(𝒓𝒓) ⋅

⟨𝑁𝑁𝑖𝑖(𝒓𝒓)⟩𝒓𝒓
�𝑁𝑁𝑠𝑠b(𝒓𝒓)�𝒓𝒓

. (S2) 

 

The second type of SSN algorithms, termed optimized subtraction, suppresses the noise in 𝑁𝑁𝑠𝑠 by 

subtracting the variation of 𝑁𝑁𝑖𝑖15,46: 

𝑁𝑁𝑠𝑠SSN(𝒓𝒓) = 𝑁𝑁𝑠𝑠(𝒓𝒓) − 𝑘𝑘(𝒓𝒓)Δ𝑁𝑁𝑖𝑖(𝒓𝒓), (S3) 

where 𝑘𝑘(𝒓𝒓) is the unknown spatially varying multiplier, and Δ𝑁𝑁𝑖𝑖(𝒓𝒓) = 𝑁𝑁𝑖𝑖(𝒓𝒓) − ⟨𝑁𝑁𝑖𝑖(𝒓𝒓)⟩𝒓𝒓 . The 

ideal 𝑘𝑘(𝒓𝒓) is proportional to the transmittance 𝑇𝑇(𝒓𝒓), the ground truth of which is unknown. To 

estimate the 𝑘𝑘(𝒓𝒓), one may use the approximated transmittance 𝑇𝑇�(𝒓𝒓). For example, 𝑇𝑇�(𝒓𝒓) can be 

acquired using 𝑇𝑇0 as in Eq. (S1) or as in Ref. 15. The object’s transmittance estimated using the 

second type of SSN algorithms is given by 
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𝑇𝑇2(𝒓𝒓) =
𝑁𝑁𝑠𝑠(𝒓𝒓)

�𝑁𝑁𝑠𝑠b(𝒓𝒓)�𝒓𝒓
− 𝑇𝑇�(𝒓𝒓)𝜂𝜂 �

𝜇𝜇SPDC
𝜇𝜇stray + 𝜇𝜇SPDC

�
2

 
Δ𝑁𝑁𝑖𝑖(𝒓𝒓)
�𝑁𝑁𝑠𝑠b(𝒓𝒓)�𝒓𝒓

. (S4) 

 

Both Eqs. (S2) and (S4) achieve higher SNR than Eq. (S1), demonstrating the quantum advantage. 

However, these methods require either prior knowledge of 𝑇𝑇(𝒓𝒓) or assumptions on the photon 

distribution and minimal stray light intensity. Here, inspired by the two algorithms, we introduce 

the covariance-over-variance (CoV) algorithm to further improve the SSN performance with fewer 

assumptions. 

 

The workflow of the CoV algorithm is shown in Supplementary Fig. 1. We acquire the time-lapsed 

image stack of 𝑁𝑁𝑠𝑠(𝒓𝒓, 𝑡𝑡), 𝑁𝑁𝑖𝑖(𝒓𝒓, 𝑡𝑡), and 𝑁𝑁𝑐𝑐(𝒓𝒓, 𝑡𝑡). Following the basic framework of the optimized 

subtraction (i.e., Eq. (S3)), instead of estimating 𝑘𝑘(𝒓𝒓) with approximated 𝑇𝑇(𝒓𝒓), we derive the 

optimal 𝑘𝑘(𝒓𝒓) by minimizing the variance of 𝑁𝑁𝑠𝑠SSN(𝒓𝒓, 𝑡𝑡): 

Var𝑡𝑡[𝑁𝑁𝑠𝑠SSN(𝒓𝒓, 𝑡𝑡)] = Var𝑡𝑡[𝑁𝑁𝑠𝑠(𝒓𝒓, 𝑡𝑡)] + 𝑘𝑘2(𝒓𝒓)Var𝑡𝑡[𝑁𝑁𝑖𝑖(𝒓𝒓, 𝑡𝑡)] − 2𝑘𝑘(𝒓𝒓)Cov𝑡𝑡[𝑁𝑁𝑠𝑠(𝒓𝒓, 𝑡𝑡),𝑁𝑁𝑖𝑖(𝒓𝒓, 𝑡𝑡)], (S5) 

where Var𝑡𝑡 and Cov𝑡𝑡 denote the variance and covariance along the time sequence, respectively. 

To minimize Var𝑡𝑡[𝑁𝑁𝑠𝑠SSN(𝒓𝒓, 𝑡𝑡)] with regard to 𝑘𝑘(𝒓𝒓): 

𝜕𝜕Var𝑡𝑡[𝑁𝑁𝑠𝑠SSN(𝒓𝒓, 𝑡𝑡)]
𝜕𝜕𝑘𝑘(𝒓𝒓) = 2𝑘𝑘(𝒓𝒓)Var𝑡𝑡[𝑁𝑁𝑖𝑖(𝒓𝒓, 𝑡𝑡)] − 2Cov𝑡𝑡[𝑁𝑁𝑠𝑠(𝒓𝒓, 𝑡𝑡),𝑁𝑁𝑖𝑖(𝒓𝒓, 𝑡𝑡)] = 0. (S6) 

The optimized 𝑘𝑘∗(𝒓𝒓) is thus given by 

𝑘𝑘∗(𝒓𝒓) =
Cov𝑡𝑡[𝑁𝑁𝑠𝑠(𝒓𝒓, 𝑡𝑡),𝑁𝑁𝑖𝑖(𝒓𝒓, 𝑡𝑡)]

Var𝑡𝑡[𝑁𝑁𝑖𝑖(𝒓𝒓, 𝑡𝑡)] . (S7) 

 

Since �𝑁𝑁𝑠𝑠SSN(𝒓𝒓)�𝒓𝒓 = ⟨𝑁𝑁𝑠𝑠(𝒓𝒓)⟩𝒓𝒓  according to Eq. ( S3 ), combining Eqs. ( S1 ), ( S3 ), and (S7 ) 

completes the CoV algorithm: 

𝑇𝑇3(𝒓𝒓) =
𝑁𝑁𝑠𝑠(𝒓𝒓)

�𝑁𝑁𝑠𝑠b(𝒓𝒓)�𝒓𝒓
−

Cov𝑡𝑡[𝑁𝑁𝑠𝑠(𝒓𝒓, 𝑡𝑡),𝑁𝑁𝑖𝑖(𝒓𝒓, 𝑡𝑡)]
Var𝑡𝑡[𝑁𝑁𝑖𝑖(𝒓𝒓, 𝑡𝑡)] ⋅

Δ𝑁𝑁𝑖𝑖(𝒓𝒓)
�𝑁𝑁𝑠𝑠b(𝒓𝒓)�𝒓𝒓

. (S8) 

 

From Eqs. (S5) and (S7), we can derive the minimized variance as 

Var𝑡𝑡[𝑁𝑁𝑠𝑠SSN(𝒓𝒓, 𝑡𝑡)] = Var𝑡𝑡[𝑁𝑁𝑠𝑠(𝒓𝒓, 𝑡𝑡)] −
Cov𝑡𝑡2[𝑁𝑁𝑠𝑠(𝒓𝒓, 𝑡𝑡),𝑁𝑁𝑖𝑖(𝒓𝒓, 𝑡𝑡)]

Var𝑡𝑡[𝑁𝑁𝑖𝑖(𝒓𝒓, 𝑡𝑡)] = Var𝑡𝑡[𝑁𝑁𝑠𝑠(𝒓𝒓, 𝑡𝑡)]�1 − 𝜌𝜌𝑁𝑁𝑠𝑠,𝑁𝑁𝑖𝑖
2 �, (S9) 
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where 𝜌𝜌𝑁𝑁𝑠𝑠,𝑁𝑁𝑖𝑖 is the Pearson's correlation coefficient between 𝑁𝑁𝑠𝑠 and 𝑁𝑁𝑖𝑖 along the time sequence. 

Note that the variance of the classical algorithm given by Eq. (S1) is Var𝑡𝑡[𝑁𝑁𝑠𝑠(𝒓𝒓, 𝑡𝑡)]. Since 𝜌𝜌𝑁𝑁𝑠𝑠,𝑁𝑁𝑖𝑖
2 ≥

0, the CoV algorithm guarantees SNR enhancement. 

 

It is worth noting that the CoV algorithm requires repeated measurements over time. With a single-

frame acquisition, we propose a similar algorithm to estimate 𝑘𝑘(𝒓𝒓) based on spatial repetitions, 

named as the s-CoV algorithm.  

 

The workflow of the s-CoV algorithm is shown in Supplementary Fig. 2. From the single-frame 

image 𝑁𝑁𝑠𝑠(𝒓𝒓) (or 𝑁𝑁𝑐𝑐(𝒓𝒓)), we calculate the histogram and divide the pixel values into 𝐿𝐿 bins. The 

selection of 𝐿𝐿 depends on the experimental configuration and can be optimized through iteration. 

For the 𝑙𝑙-th bin (𝑙𝑙 = 1,2, … , 𝐿𝐿), we select the pixels from the image whose values fall into this bin 

and form the image subset 𝑁𝑁𝑠𝑠𝑙𝑙(𝒓𝒓). The binary mask 𝑀𝑀𝑙𝑙(𝒓𝒓) used for segmentation (i.e., 𝑁𝑁𝑠𝑠𝑙𝑙(𝒓𝒓) =

𝑀𝑀𝑙𝑙(𝒓𝒓) ⋅ 𝑁𝑁𝑠𝑠(𝒓𝒓)) is then applied to 𝑁𝑁𝑖𝑖(𝒓𝒓) to get the image subset 𝑁𝑁𝑖𝑖𝑙𝑙(𝒓𝒓). Following Eq. (S7), we can 

estimate the subset of 𝑘𝑘∗(𝒓𝒓) (denoted as 𝑘𝑘𝑛𝑛,∗) as 

 𝑘𝑘𝑙𝑙,∗ =
Cov𝒓𝒓�𝑁𝑁𝑠𝑠𝑙𝑙(𝒓𝒓),𝑁𝑁𝑖𝑖𝑙𝑙(𝒓𝒓)�

Var𝒓𝒓[𝑁𝑁𝑖𝑖𝑙𝑙(𝒓𝒓)]
, (S10) 

where Var𝒓𝒓 and Cov𝒓𝒓 denote the variance and covariance along spatial locations, respectively. The 

same procedure is repeated for all 𝑙𝑙 , and the resulting 𝑘𝑘∗(𝒓𝒓)  is the summation of all 𝑀𝑀𝑙𝑙(𝒓𝒓) 

modified by 𝑘𝑘𝑙𝑙,∗: 

𝑘𝑘∗(𝒓𝒓) = �𝑘𝑘𝑙𝑙,∗𝑀𝑀𝑙𝑙(𝒓𝒓)
𝑙𝑙

= �
Cov𝒓𝒓�𝑁𝑁𝑠𝑠𝑙𝑙(𝒓𝒓),𝑁𝑁𝑖𝑖𝑙𝑙(𝒓𝒓)�

Var𝒓𝒓[𝑁𝑁𝑖𝑖𝑙𝑙(𝒓𝒓)]
𝑀𝑀𝑙𝑙(𝒓𝒓)

𝑙𝑙

. (S11) 

Combining Eqs. (S1), (S3), and (S11) completes the s-CoV algorithm: 

𝑇𝑇4(𝒓𝒓) =
𝑁𝑁𝑠𝑠(𝒓𝒓)

�𝑁𝑁𝑠𝑠b(𝒓𝒓)�𝒓𝒓
− ��

Cov𝒓𝒓�𝑁𝑁𝑠𝑠𝑙𝑙(𝒓𝒓),𝑁𝑁𝑖𝑖𝑙𝑙(𝒓𝒓)�
Var𝒓𝒓[𝑁𝑁𝑖𝑖𝑙𝑙(𝒓𝒓)]

𝑀𝑀𝑙𝑙(𝒓𝒓)
𝑙𝑙

� ⋅
Δ𝑁𝑁𝑖𝑖(𝒓𝒓)
�𝑁𝑁𝑠𝑠b(𝒓𝒓)�𝒓𝒓

. (S12) 

 

To compare the performances of the three algorithms, we simulate the 1D case where the object is 

placed in the signal arm with constant 𝑇𝑇(𝑥𝑥) = 0.5. Each detector in the signal and idler arms 

performs Bernoulli trials with probability 𝜂𝜂  to select the SPDC photons (following a Poisson 
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distribution with 𝜇𝜇SPDC). The stray light photons in each detector follow two independent Poisson 

distributions with 𝜂𝜂𝜇𝜇stray. The schematics are shown in Supplementary Fig. 3a. 

 

We simulate two scenarios with (1) a fixed stray light-SPDC light ratio (𝜇𝜇stray 𝜇𝜇SPDC⁄ = 1) and a 

varying detector efficiency 𝜂𝜂 and (2) a fixed 𝜂𝜂 = 0.7 and a varying 𝜇𝜇stray 𝜇𝜇SPDC⁄ . Supplementary 

Figs. 3b and c show the SNR enhancement using 𝑁𝑁𝑠𝑠 and 𝑁𝑁𝑖𝑖 images with Eqs. (S2), (S4), and (S8) 

compared to Eq. (S1). Supplementary Figs. 3d and e show similar results using 𝑁𝑁𝑐𝑐 and 𝑁𝑁𝑖𝑖 images. 

In all cases, the CoV algorithm outperforms the others consistently. 
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Supplementary Note 2 Entanglement pinhole in ICE 

In the simplified schematic of the imaging system shown in Supplementary Fig. 5, 𝒓𝒓0,𝑠𝑠, 𝒓𝒓1,𝑠𝑠, and 

𝒓𝒓2,𝑠𝑠 represent the coordinates of the BBO, the object, and the two detectors 𝐷𝐷𝑠𝑠 for signal photons, 

respectively. 𝒓𝒓0,𝑖𝑖 and 𝒓𝒓2,𝑖𝑖 represent the transverse coordinates of the BBO and the detector 𝐷𝐷𝑖𝑖 for 

idler photons, respectively. 𝒌𝒌0,𝑠𝑠  and 𝒌𝒌0,𝑖𝑖  represent the wavevectors of the entangled signal and 

idler photons emitted from the BBO, respectively. 𝒌𝒌1,𝑠𝑠 denotes the wavevector of the signal photon 

after the first objective. 𝒌𝒌1,𝑠𝑠
′  denotes the wavevector of the signal photon emitted from the object. 

𝒌𝒌2,𝑠𝑠 denotes the wavevector of the signal photon on the detector 𝐷𝐷𝑠𝑠. All wavevectors have the 

same constant magnitude 𝑘𝑘. Here, the subscripts s and i denote signal and idler, respectively.  

 

The rate of coincidence counts of the two detectors is given by 

𝐺𝐺ICE
(2)�𝒓𝒓2,𝑠𝑠, 𝒓𝒓2,𝑖𝑖� = ��0�𝐸𝐸�𝑠𝑠

(+)𝐸𝐸�𝑖𝑖
(+)�𝜉𝜉��

2
, (S13) 

where |𝜉𝜉⟩ is the wavefunction of entangled photon pairs from the BBO: 

|𝜉𝜉⟩ = �𝑒𝑒−𝑗𝑗𝒌𝒌0,𝑠𝑠∙𝒓𝒓0,𝑠𝑠𝑒𝑒−𝑗𝑗𝒌𝒌0,𝑖𝑖∙𝒓𝒓0,𝑖𝑖

𝒌𝒌0,𝑠𝑠

�1𝒌𝒌0,𝑠𝑠 , 1𝒌𝒌0,𝑖𝑖�. (S14) 

The phase-matching condition constrains that the transverse components of 𝒌𝒌0,𝑠𝑠  and 𝒌𝒌0,𝑖𝑖  are 

opposite while their axial components are identical. If 𝒓𝒓𝒑𝒑  and 𝒌𝒌𝒑𝒑  represent the position and 

wavevector of the pump light, the state denotes a spatially entangled state with �𝒓𝒓0,𝑠𝑠 + 𝒓𝒓0,𝑖𝑖� 2⁄ =

𝒓𝒓𝒑𝒑 and 𝒌𝒌0,𝑠𝑠 + 𝒌𝒌0,𝑖𝑖 = 𝒌𝒌𝒑𝒑. Because of the latter constraint, we choose to sum over 𝒌𝒌0,𝑠𝑠 only. In the 

signal arm, 𝑂𝑂�𝑠𝑠 and 𝑂𝑂�𝑠𝑠′ denote the operators for the objective and lenses before and after the object 

plane, respectively. In the idler arm, 𝑂𝑂�𝑖𝑖  denotes the operators for the lens in front of 𝐷𝐷𝑖𝑖 . For 

simplicity, we set the image magnification ratios of both channels to unity. 𝐸𝐸�𝑠𝑠
(−) and 𝐸𝐸�𝑖𝑖

(−) are the 

Hermitian conjugates of the electric fields 𝐸𝐸�𝑠𝑠
(+)  and 𝐸𝐸�𝑖𝑖

(+) , respectively. The electric fields are 

derived by propagation from the source to the detectors as follows if the amplitude transmission 

coefficient of the object 𝑡𝑡 = 1 47:  

𝐸𝐸�𝑠𝑠
(+)�𝒓𝒓2,𝑠𝑠, 𝒓𝒓1,𝑠𝑠, 𝒓𝒓0,𝑠𝑠� = 𝐸𝐸0�𝒓𝒓0,𝑠𝑠��̂�𝑒�0𝒓𝒓2,𝑠𝑠��1𝒓𝒓2,𝑠𝑠�𝑂𝑂�

𝑠𝑠′�1𝒓𝒓1,𝑠𝑠��1𝒓𝒓1,𝑠𝑠�𝑂𝑂�
𝑠𝑠. (S15) 

Then we add 𝑡𝑡�𝒓𝒓1,𝑠𝑠,𝒌𝒌1,𝑠𝑠� and expand Eq. (S15) over 𝒌𝒌0,𝑠𝑠,𝒌𝒌𝟏𝟏,𝑠𝑠,𝒌𝒌𝟏𝟏,𝑠𝑠
′ , and 𝒌𝒌2,𝑠𝑠: 
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𝐸𝐸�𝑠𝑠
(+)�𝒓𝒓2,𝑠𝑠, 𝒓𝒓1,𝑠𝑠, 𝒓𝒓0,𝑠𝑠� = � 𝐸𝐸0�𝒓𝒓0,𝑠𝑠��̂�𝑒�0𝒓𝒓2,𝑠𝑠��1𝒓𝒓2,𝑠𝑠��1𝒌𝒌2,𝑠𝑠��1𝒌𝒌2,𝑠𝑠�𝑂𝑂�

𝑠𝑠′ �1𝒌𝒌1,𝑠𝑠
′ �

𝒌𝒌0,𝑠𝑠,𝒌𝒌𝟏𝟏,𝑠𝑠,𝒌𝒌𝟏𝟏,𝑠𝑠
′ ,𝒌𝒌2,𝑠𝑠

× �1𝒌𝒌1,𝑠𝑠
′ � �1𝒓𝒓1,𝑠𝑠�𝑡𝑡�𝒓𝒓1,𝑠𝑠,𝒌𝒌1,𝑠𝑠��1𝒓𝒓1,𝑠𝑠��1𝒌𝒌1,𝑠𝑠��1𝒌𝒌1,𝑠𝑠�𝑂𝑂�

𝑠𝑠�1𝒌𝒌0,𝑠𝑠��1𝒌𝒌0,𝑠𝑠�

= � 𝐸𝐸0�𝒓𝒓0,𝑠𝑠��̂�𝑒�0𝒓𝒓2,𝑠𝑠��1𝒓𝒓2,𝑠𝑠��1𝒌𝒌2,𝑠𝑠�𝑂𝑂�𝒌𝒌𝟐𝟐,𝑠𝑠,𝒌𝒌𝟏𝟏,𝑠𝑠
′

𝑠𝑠′

𝒌𝒌0,𝑠𝑠,𝒌𝒌𝟏𝟏,𝑠𝑠,𝒌𝒌𝟏𝟏,𝑠𝑠
′ ,𝒌𝒌2,𝑠𝑠

× �1𝒌𝒌1,𝑠𝑠
′ � �1𝒓𝒓1,𝑠𝑠�𝑡𝑡�𝒓𝒓1,𝑠𝑠,𝒌𝒌1,𝑠𝑠��1𝒓𝒓1,𝑠𝑠��1𝒌𝒌1,𝑠𝑠�𝑂𝑂�𝒌𝒌1,𝑠𝑠,𝒌𝒌0,𝑠𝑠

𝑠𝑠 �1𝒌𝒌0,𝑠𝑠�

= � 𝐸𝐸0�𝒓𝒓0,𝑠𝑠��̂�𝑒𝑡𝑡�𝒓𝒓1,𝑠𝑠,𝒌𝒌1,𝑠𝑠��0𝒓𝒓2,𝑠𝑠�
𝒌𝒌0,𝑠𝑠,𝒌𝒌𝟏𝟏,𝑠𝑠,𝒌𝒌𝟏𝟏,𝑠𝑠

′ ,𝒌𝒌2,𝑠𝑠

ℎ�𝒓𝒓2,𝑠𝑠,𝒌𝒌2,𝑠𝑠; 𝒓𝒓1,𝑠𝑠,𝒌𝒌1,𝑠𝑠
′ �

× �1𝒓𝒓1,𝑠𝑠��1𝒌𝒌1,𝑠𝑠�𝑂𝑂�𝒌𝒌1,𝑠𝑠,𝒌𝒌0,𝑠𝑠
𝑠𝑠 �1𝒌𝒌0,𝑠𝑠�, (S16)

 

 

𝐸𝐸�𝑖𝑖
(+)�𝒓𝒓2,𝑖𝑖� = 𝐸𝐸0�̂�𝑒�0𝒓𝒓𝟐𝟐,𝒊𝒊��1𝒓𝒓𝟐𝟐,𝒊𝒊�𝑂𝑂�

𝑖𝑖 = � 𝐸𝐸0�̂�𝑒�0𝒓𝒓2,𝑖𝑖��1𝒓𝒓2,𝑖𝑖��1𝒌𝒌2,𝑖𝑖��1𝒌𝒌𝟐𝟐,𝑖𝑖�𝑂𝑂�
𝑖𝑖�1𝒌𝒌0,𝑖𝑖��1𝒌𝒌0,𝑖𝑖�

𝒌𝒌0,𝑖𝑖,𝒌𝒌2,𝑖𝑖

= � 𝐸𝐸0�̂�𝑒�0𝒓𝒓2,𝑖𝑖��1𝒓𝒓2,𝑖𝑖��1𝒌𝒌2,𝑖𝑖�𝑂𝑂�𝒌𝒌2,𝑖𝑖,𝒌𝒌0,𝑖𝑖
𝑖𝑖 �1𝒌𝒌0,𝑖𝑖�

𝒌𝒌0,𝑖𝑖,𝒌𝒌2,𝑖𝑖

. (S17)
 

Here, 𝐸𝐸0 is the amplitude of the electric field; �̂�𝑒 is the polarization unit vector. The projectors 

�0𝒓𝒓𝟐𝟐,𝒔𝒔��1𝒓𝒓𝟐𝟐,𝒔𝒔�  and �0𝒓𝒓𝟐𝟐,𝒊𝒊��1𝒓𝒓𝟐𝟐,𝒊𝒊�  account for measurements at 𝒓𝒓2,𝑠𝑠  and 𝒓𝒓2,𝑖𝑖 , respectively. The 

difference between 𝒌𝒌1,𝑠𝑠 and 𝒌𝒌1,𝑠𝑠
′  accounts for the diffraction of the object. The type-I SPDC crystal 

guarantees the same polarization for the signal and idler photons. ℎ�𝒓𝒓2,𝑠𝑠,𝒌𝒌2,𝑠𝑠;𝒓𝒓1,𝑠𝑠,𝒌𝒌1,𝑠𝑠
′ � =

�1𝒓𝒓2,𝑠𝑠��1𝒌𝒌2,𝑠𝑠�𝑂𝑂�𝒌𝒌𝟐𝟐,𝑠𝑠,𝒌𝒌𝟏𝟏,𝑠𝑠
′

𝑠𝑠′ �1𝒌𝒌1,𝑠𝑠
′ � �1𝒓𝒓1,𝑠𝑠� = 𝑒𝑒𝑖𝑖𝜙𝜙12𝑠𝑠 , and the phase shift 𝜙𝜙12𝑠𝑠  is related to the signal photon 

propagation from the object to the detector 𝐷𝐷𝑠𝑠 . The phase changes 𝜙𝜙01𝑠𝑠  and 𝜙𝜙02𝑖𝑖  are given in a 

similar way: ℎ�𝒓𝒓1,𝑠𝑠,𝒌𝒌1,𝑠𝑠; 𝒓𝒓0,𝑠𝑠,𝒌𝒌0,𝑠𝑠� = �1𝒓𝒓1,𝑠𝑠��1𝒌𝒌1,𝑠𝑠�𝑂𝑂�𝒌𝒌1,𝑠𝑠,𝒌𝒌0,𝑠𝑠

𝑠𝑠 �1𝒌𝒌0,𝑠𝑠��1𝒓𝒓0,𝑠𝑠� = 𝑒𝑒𝑖𝑖𝜙𝜙01𝑠𝑠 , and 

ℎ�𝒓𝒓𝟐𝟐,𝑖𝑖 ,𝒌𝒌𝟐𝟐,𝑖𝑖; 𝒓𝒓0,𝑖𝑖 ,𝒌𝒌0,𝑖𝑖� = �1𝒓𝒓𝟐𝟐,𝑖𝑖��1𝒌𝒌𝟐𝟐,𝑖𝑖�𝑂𝑂�𝒌𝒌2,𝑖𝑖,𝒌𝒌0,𝑖𝑖
𝑖𝑖 �1𝒌𝒌0,𝑖𝑖��1𝒓𝒓0,𝑠𝑠� = 𝑒𝑒𝑖𝑖𝜙𝜙02𝑖𝑖 .  

 

Next, we substitute 𝐸𝐸�𝑠𝑠
(+), 𝐸𝐸�𝑖𝑖

(+), and |𝜉𝜉⟩ into Eq. (S13): 

𝐸𝐸�𝑖𝑖
(+)�𝒓𝒓2,𝑖𝑖 , 𝒓𝒓0,𝑖𝑖�𝐸𝐸�𝑠𝑠

(+)�𝒓𝒓2,𝑠𝑠,𝒓𝒓1,𝑠𝑠, 𝒓𝒓0,𝑠𝑠�|𝜉𝜉⟩

= 𝐸𝐸02 � 𝑡𝑡�𝒓𝒓1,𝑠𝑠,𝒌𝒌1,𝑠𝑠��0𝒓𝒓2,𝑠𝑠 , 0𝒓𝒓2,𝑖𝑖�
𝒌𝒌0,𝑠𝑠,𝒌𝒌𝟏𝟏,𝑠𝑠,𝒌𝒌𝟏𝟏,𝑠𝑠

′ ,𝒌𝒌2,𝑠𝑠

× ℎ�𝒓𝒓2,𝑠𝑠,𝒌𝒌2,𝑠𝑠; 𝒓𝒓1,𝑠𝑠,𝒌𝒌1,𝑠𝑠
′ �ℎ�𝒓𝒓1,𝑠𝑠,𝒌𝒌1,𝑠𝑠; 𝒓𝒓0,𝑠𝑠,𝒌𝒌0,𝑠𝑠�ℎ�𝒓𝒓2,𝑖𝑖 ,𝒌𝒌2,𝑖𝑖; 𝒓𝒓0,𝑖𝑖 ,𝒌𝒌0,𝑖𝑖�. (S18)
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Next, to simplify Eq. (S18), we define 

𝑡𝑡′�𝒓𝒓1,𝑠𝑠� =
∑ 𝑡𝑡�𝒓𝒓1,𝑠𝑠,𝒌𝒌1,𝑠𝑠�ℎ�𝒓𝒓1,𝑠𝑠,𝒌𝒌1,𝑠𝑠; 𝒓𝒓0,𝑠𝑠,𝒌𝒌0,𝑠𝑠�ℎ�𝒓𝒓2,𝑖𝑖 ,𝒌𝒌2,𝑖𝑖;𝒓𝒓0,𝑖𝑖 ,𝒌𝒌0,𝑖𝑖�𝒌𝒌0,𝑠𝑠,𝒌𝒌𝟏𝟏,𝑠𝑠

∑ ℎ�𝒓𝒓1,𝑠𝑠,𝒌𝒌1,𝑠𝑠; 𝒓𝒓0,𝑠𝑠,𝒌𝒌0,𝑠𝑠�ℎ�𝒓𝒓2,𝑖𝑖 ,𝒌𝒌0,𝑖𝑖;𝒓𝒓0,𝑖𝑖 ,𝒌𝒌0,𝑖𝑖�𝒌𝒌0,𝑠𝑠,𝒌𝒌𝟏𝟏,𝑠𝑠

. (S19) 

Substitute Eqs. (S18) and (S19) into Eq. (S13): 

𝐺𝐺ICE
(2)�𝒓𝒓0,𝑖𝑖 , 𝒓𝒓1,𝑠𝑠;𝒓𝒓2,𝑠𝑠, 𝒓𝒓2,𝑖𝑖� = 𝐸𝐸04�𝑡𝑡′�𝒓𝒓1,𝑠𝑠��

2
� � ℎ�𝒓𝒓2,𝑠𝑠,𝒌𝒌2,𝑠𝑠; 𝒓𝒓1,𝑠𝑠,𝒌𝒌1,𝑠𝑠

′ �
𝒌𝒌𝟏𝟏,𝑠𝑠
′ ,𝒌𝒌2,𝑠𝑠

�

2

× � � ℎ�𝒓𝒓1,𝑠𝑠,𝒌𝒌1,𝑠𝑠; 𝒓𝒓0,𝑠𝑠,𝒌𝒌0,𝑠𝑠�ℎ�𝒓𝒓2,𝑖𝑖 ,𝒌𝒌2,𝑖𝑖; 𝒓𝒓0,𝑖𝑖 ,𝒌𝒌0,𝑖𝑖�
𝒌𝒌0,𝑠𝑠,𝒌𝒌𝟏𝟏,𝑠𝑠

�

2

. (S20)

 

The detectors detect true coincidence of a photon pair within the coincidence window (8 ns). 

Photon pairs from different positions of the BBO most likely fall into different coincidence 

windows and, hence, are considered incoherent48. Integrating the contributions of photon pairs 

from different positions incoherently yields the total rate of coincidence counts: 

𝐺𝐺ICE
(2)�𝒓𝒓1,𝑠𝑠; 𝒓𝒓2,𝑠𝑠, 𝒓𝒓2,𝑖𝑖� = �𝑝𝑝0�𝒓𝒓0,𝑠𝑠�𝐺𝐺ICE

(2)�𝒓𝒓0,𝑖𝑖 ,𝒓𝒓1,𝑠𝑠; 𝒓𝒓2,𝑠𝑠, 𝒓𝒓2,𝑖𝑖�𝑑𝑑𝒓𝒓0,𝑠𝑠
𝑆𝑆

= 𝐸𝐸04�𝑡𝑡′�𝒓𝒓1,𝑠𝑠��
2
� � ℎ�𝒓𝒓2,𝑠𝑠,𝒌𝒌2,𝑠𝑠;𝒓𝒓1,𝑠𝑠,𝒌𝒌1,𝑠𝑠

′ �
𝒌𝒌𝟏𝟏,𝑠𝑠
′ ,𝒌𝒌2,𝑠𝑠

�

2

× �𝑝𝑝0�𝒓𝒓0,𝑠𝑠� � � ℎ�𝒓𝒓1,𝑠𝑠,𝒌𝒌1,𝑠𝑠; 𝒓𝒓0,𝑠𝑠,𝒌𝒌0,𝑠𝑠�ℎ�𝒓𝒓2,𝑖𝑖 ,𝒌𝒌2,𝑖𝑖; 𝒓𝒓0,𝑖𝑖 ,𝒌𝒌0,𝑖𝑖�
𝒌𝒌0,𝑠𝑠,𝒌𝒌𝟏𝟏,𝑠𝑠

�

2

𝑑𝑑𝒓𝒓0,𝑠𝑠
𝑆𝑆

. (S21)

 

Here, 𝑆𝑆 represents the spatial domain of the BBO source, and 𝑝𝑝0�𝒓𝒓0,𝑠𝑠� denotes the probability 

density function for each photon pair at the source. To further simplify the result, we define the 

following PSFs: 

ℎep′ = � ℎ�𝒓𝒓1,𝑠𝑠,𝒌𝒌1,𝑠𝑠;𝒓𝒓0,𝑠𝑠,𝒌𝒌0,𝑠𝑠�ℎ�𝒓𝒓2,𝑖𝑖 ,𝒌𝒌2,𝑖𝑖; 𝒓𝒓0,𝑖𝑖 ,𝒌𝒌0,𝑖𝑖�
𝒌𝒌0,𝑠𝑠,𝒌𝒌𝟏𝟏,𝑠𝑠

= � 𝑒𝑒𝑖𝑖𝜙𝜙01𝑠𝑠 𝑒𝑒𝑖𝑖𝜙𝜙𝑖𝑖

𝒌𝒌0,𝑠𝑠,𝒌𝒌𝟏𝟏,𝑠𝑠

= � 𝑒𝑒𝑖𝑖𝜙𝜙ep
𝒌𝒌0,𝑠𝑠,𝒌𝒌𝟏𝟏,𝑠𝑠

, (S22)
 

where 𝜙𝜙ep = 𝜙𝜙01𝑠𝑠 + 𝜙𝜙𝑖𝑖 is the equivalent phase shift related to ℎep′ . 

�ℎep�𝒓𝒓2,𝑖𝑖; 𝒓𝒓1,𝑠𝑠��
2 = �𝑝𝑝0�𝒓𝒓0,𝑠𝑠��ℎep′ �

2𝑑𝑑𝒓𝒓0,𝑠𝑠
𝑆𝑆

, (S23) 
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ℎ𝑠𝑠�𝒓𝒓1,𝑠𝑠; 𝒓𝒓2,𝑠𝑠� = � ℎ�𝒓𝒓2,𝑠𝑠,𝒌𝒌2,𝑠𝑠; 𝒓𝒓1,𝑠𝑠,𝒌𝒌1,𝑠𝑠
′ �

𝒌𝒌𝟏𝟏,𝑠𝑠
′ ,𝒌𝒌2,𝑠𝑠

, (S24) 

where the subscript ep denotes the entanglement pinhole. Consequently, we reach 

𝐺𝐺ICE
(2)�𝒓𝒓1,𝑠𝑠; 𝒓𝒓2,𝑠𝑠, 𝒓𝒓2,𝑖𝑖� = 𝐸𝐸04�𝑡𝑡′�𝒓𝒓1,𝑠𝑠��

2�ℎ𝑠𝑠�𝒓𝒓1,𝑠𝑠; 𝒓𝒓2,𝑠𝑠��
2�ℎep�𝒓𝒓2,𝑖𝑖; 𝒓𝒓1,𝑠𝑠��

2. (S25) 

Integration over the finite apertures of the two detectors yields  

𝐺𝐺ICE
(2)�𝒓𝒓1,𝑠𝑠� = 𝐸𝐸04�𝑡𝑡′�𝒓𝒓1,𝑠𝑠��

2 � 𝑝𝑝𝑠𝑠�𝒓𝒓2,𝑠𝑠��ℎ𝑠𝑠�𝒓𝒓1,𝑠𝑠; 𝒓𝒓2,𝑠𝑠��
2𝑑𝑑𝒓𝒓2,𝑠𝑠

𝐷𝐷𝑠𝑠

×  � 𝑝𝑝𝑖𝑖(𝒓𝒓2,𝑖𝑖)�ℎep�𝒓𝒓2,𝑖𝑖; 𝒓𝒓1,𝑠𝑠��
2𝑑𝑑𝒓𝒓2,𝑖𝑖

𝐷𝐷𝑖𝑖
, (S26)

 

where 𝑝𝑝𝑠𝑠(𝒓𝒓2,𝑠𝑠) and 𝑝𝑝𝑖𝑖(𝒓𝒓2,𝑖𝑖) denote the photon detection probability density functions for the two 

detectors, respectively. 

 

For classical imaging (CI) using signal-channel-only detection (i.e., raw singles photon counts 

received by 𝐷𝐷𝑠𝑠), the photon counting rate is 

𝐺𝐺CI
(1)�𝒓𝒓2,𝑠𝑠� = ��0�𝐸𝐸�𝑠𝑠

(+)�𝜉𝜉𝑠𝑠��
2

, (S27) 

where the signal photon state |𝜉𝜉𝑠𝑠⟩ = ∑ 𝑒𝑒−𝑗𝑗𝒌𝒌0,𝑠𝑠∙𝒓𝒓0,𝑠𝑠𝒌𝒌0,𝑠𝑠 �1𝒌𝒌0,𝑠𝑠�. With 𝐸𝐸�𝑠𝑠
(+)and |𝜉𝜉𝑠𝑠⟩ we find 

𝐸𝐸�𝑠𝑠
(+)�𝒓𝒓2,𝑠𝑠, 𝒓𝒓1,𝑠𝑠�|𝜉𝜉𝑠𝑠⟩ = 𝐸𝐸0

× � �0𝒓𝒓2,𝑠𝑠�𝑡𝑡�𝒓𝒓1,𝑠𝑠,𝒌𝒌1,𝑠𝑠�ℎ𝑠𝑠�𝒓𝒓2,𝑠𝑠,𝒌𝒌2,𝑠𝑠; 𝒓𝒓1,𝑠𝑠,𝒌𝒌1,𝑠𝑠
′ �ℎ𝑠𝑠�𝒓𝒓1,𝑠𝑠,𝒌𝒌1,𝑠𝑠; 𝒓𝒓0,𝑠𝑠,𝒌𝒌0,𝑠𝑠�

𝒌𝒌0,𝑠𝑠,𝒌𝒌𝟏𝟏,𝑠𝑠,𝒌𝒌𝟏𝟏,𝑠𝑠
′ ,𝒌𝒌2,𝑠𝑠

. (S28) 

Hence, we derive and simplify 𝐺𝐺CI
(1)�𝒓𝒓1,𝑠𝑠; 𝒓𝒓2,𝑠𝑠� to be 

𝐺𝐺CI
(1)�𝒓𝒓1,𝑠𝑠; 𝒓𝒓2,𝑠𝑠� = 𝐸𝐸02�𝑡𝑡′�𝒓𝒓1,𝑠𝑠��

2�ℎ𝑠𝑠�𝒓𝒓1,𝑠𝑠; 𝒓𝒓2,𝑠𝑠��
2 × �𝑝𝑝0�𝒓𝒓0,𝑠𝑠��𝐴𝐴𝑠𝑠0ℎ𝑠𝑠�𝒓𝒓0,𝑠𝑠;𝒓𝒓1,𝑠𝑠��

2𝑑𝑑𝒓𝒓0,𝑠𝑠
𝑆𝑆

. (S29) 

Integration over the finite aperture of the detector yields 

𝐺𝐺CI
(1)�𝒓𝒓1,𝑠𝑠;𝒓𝒓2,𝑠𝑠�

= 𝐸𝐸02�𝑡𝑡′�𝒓𝒓1,𝑠𝑠��
2 � 𝑝𝑝𝑠𝑠(𝒓𝒓2,𝑠𝑠)�ℎ𝑠𝑠�𝒓𝒓1,𝑠𝑠; 𝒓𝒓2,𝑠𝑠��

2𝑑𝑑𝒓𝒓2,𝑠𝑠
𝐷𝐷𝑠𝑠

× �𝑝𝑝0�𝒓𝒓0,𝑠𝑠��ℎ𝑠𝑠�𝒓𝒓0,𝑠𝑠;𝒓𝒓1,𝑠𝑠��
2𝑑𝑑𝒓𝒓0,𝑠𝑠

𝑆𝑆
. (S30)

 

If we assume that the object in the experiment is not sensitive to the incidence wavevectors such 

that 𝑡𝑡�𝒓𝒓1,𝑠𝑠,𝒌𝒌1,𝑠𝑠� ≈ 𝑡𝑡�𝒓𝒓1,𝑠𝑠,𝒌𝒌0�, and 𝒌𝒌0  is along the optical axis, Eq. (S19) indicates 𝑡𝑡′�𝒓𝒓1,𝑠𝑠� =

𝑡𝑡�𝒓𝒓1,𝑠𝑠�. 
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Supplementary Note 3 ICE using accidental coincidences 

If the two detectors only measure accidental coincidences, the results could be treated as 

coincidences of photons from different positions �𝒓𝒓0,𝑠𝑠, 𝒓𝒓0,𝑖𝑖� with different wavevectors �𝒌𝒌0,𝑠𝑠,𝒌𝒌0,𝑖𝑖�. 

The source state is replaced by 

|𝜉𝜉⟩acc = � 𝑒𝑒−𝑗𝑗𝒌𝒌0,𝑠𝑠∙𝒓𝒓0,𝑠𝑠𝑒𝑒−𝑗𝑗𝒌𝒌0,𝑖𝑖∙𝒓𝒓0,𝑖𝑖

𝒌𝒌0,𝑠𝑠,𝒌𝒌0,𝑖𝑖

�1𝒌𝒌0,𝑠𝑠 , 1𝒌𝒌0,𝑖𝑖�, (S31) 

which can be written as a product state |𝜉𝜉⟩acc = ∑ 𝑒𝑒−𝑗𝑗𝒌𝒌0,𝑠𝑠∙𝒓𝒓0,𝑠𝑠𝒌𝒌0,𝑠𝑠 �1𝒌𝒌0,𝑠𝑠� ⊗ ∑ 𝑒𝑒−𝑗𝑗𝒌𝒌0,𝑖𝑖∙𝒓𝒓0,𝑖𝑖𝒌𝒌0,𝑖𝑖 �1𝒌𝒌0,𝑖𝑖�. 

Eq. (S21) becomes 

𝐺𝐺acc
(2)�𝒓𝒓1,𝑠𝑠; 𝒓𝒓2,𝑠𝑠, 𝒓𝒓2,𝑖𝑖�

= 𝐸𝐸04�𝑡𝑡′�𝒓𝒓1,𝑠𝑠��
2
� � ℎ�𝒓𝒓2,𝑠𝑠,𝒌𝒌2,𝑠𝑠; 𝒓𝒓1,𝑠𝑠,𝒌𝒌1,𝑠𝑠

′ �
𝒌𝒌𝟏𝟏,𝑠𝑠
′ ,𝒌𝒌2,𝑠𝑠

�

2

× �𝑝𝑝0�𝒓𝒓0,𝑠𝑠� � � ℎ�𝒓𝒓1,𝑠𝑠,𝒌𝒌1,𝑠𝑠; 𝒓𝒓0,𝑠𝑠,𝒌𝒌0,𝑠𝑠�
𝒌𝒌0,𝑠𝑠,𝒌𝒌𝟏𝟏,𝑠𝑠

�

2

𝑑𝑑𝒓𝒓0,𝑠𝑠
𝑆𝑆

× �𝑝𝑝0�𝒓𝒓0,𝑖𝑖� � � ℎ�𝒓𝒓2,𝑖𝑖 ,𝒌𝒌2,𝑖𝑖; 𝒓𝒓0,𝑖𝑖 ,𝒌𝒌0,𝑖𝑖�
𝒌𝒌0,𝑖𝑖,𝒌𝒌2,𝑖𝑖

�

2

𝑑𝑑𝒓𝒓0,𝑖𝑖
𝑆𝑆

. (S32)

 

Next, we can use ℎ�𝒓𝒓2,𝑠𝑠;𝒓𝒓1,𝑠𝑠� = ∑ ℎ�𝒓𝒓2,𝑠𝑠,𝒌𝒌2,𝑠𝑠; 𝒓𝒓1,𝑠𝑠,𝒌𝒌1,𝑠𝑠
′ �𝒌𝒌𝟏𝟏,𝑠𝑠

′ ,𝒌𝒌2,𝑠𝑠
, ℎ�𝒓𝒓1,𝑠𝑠;𝒓𝒓0,𝑠𝑠� =

∑ ℎ�𝒓𝒓1,𝑠𝑠,𝒌𝒌1,𝑠𝑠; 𝒓𝒓0,𝑠𝑠,𝒌𝒌0,𝑠𝑠�𝒌𝒌0,𝑠𝑠,𝒌𝒌𝟏𝟏,𝑠𝑠 , and ℎ�𝒓𝒓2,𝑖𝑖; 𝒓𝒓0,𝑖𝑖� = ∑ ℎ�𝒓𝒓2,𝑖𝑖 ,𝒌𝒌2,𝑖𝑖;𝒓𝒓0,𝑖𝑖 ,𝒌𝒌0,𝑖𝑖�𝒌𝒌0,𝑖𝑖  to simplify 𝐺𝐺acc
(2): 

𝐺𝐺acc
(2)�𝒓𝒓1,𝑠𝑠; 𝒓𝒓2,𝑠𝑠, 𝒓𝒓2,𝑖𝑖� = 𝐸𝐸04�𝑡𝑡′�𝒓𝒓1,𝑠𝑠��

2�ℎ�𝒓𝒓2,𝑠𝑠; 𝒓𝒓1,𝑠𝑠��
2 �𝑝𝑝0�𝒓𝒓0,𝑠𝑠��ℎ�𝒓𝒓1,𝑠𝑠; 𝒓𝒓0,𝑠𝑠��

2𝑑𝑑𝒓𝒓0,𝑠𝑠
𝑆𝑆

× �𝑝𝑝0�𝒓𝒓0,𝑖𝑖��ℎ�𝒓𝒓2,𝑖𝑖; 𝒓𝒓0,𝑖𝑖��
2𝑑𝑑𝒓𝒓0,𝑖𝑖

𝑆𝑆
. (S33)

 

Integration over the finite aperture of the detector yields 

𝐺𝐺acc
(2)�𝒓𝒓1,𝑠𝑠� = 𝐸𝐸04�𝑡𝑡′�𝒓𝒓1,𝑠𝑠��

2 � 𝑝𝑝𝑠𝑠(𝒓𝒓2,𝑠𝑠)�ℎ�𝒓𝒓2,𝑠𝑠; 𝒓𝒓1,𝑠𝑠��
2𝑑𝑑𝒓𝒓2,𝑠𝑠

𝐷𝐷𝑠𝑠
�𝑝𝑝0�𝒓𝒓0,𝑠𝑠��ℎ�𝒓𝒓1,𝑠𝑠; 𝒓𝒓0,𝑠𝑠��

2𝑑𝑑𝒓𝒓0,𝑠𝑠
𝑆𝑆

× � �𝑝𝑝𝑖𝑖(𝒓𝒓2,𝑖𝑖)𝑝𝑝0�𝒓𝒓0,𝑖𝑖��ℎ�𝒓𝒓2,𝑖𝑖; 𝒓𝒓0,𝑖𝑖��
2𝑑𝑑𝒓𝒓0,𝑖𝑖

𝑆𝑆
𝑑𝑑𝒓𝒓2,𝑖𝑖

𝐷𝐷𝑖𝑖
. (S34)

 

Because last term is a constant with a determined 𝐷𝐷𝑖𝑖 and 𝑆𝑆, 𝐺𝐺acc
(2) ∝ 𝐺𝐺CI

(1). Imaging with accidental 

coincidences therefore provides the same resolution and DOF as classical imaging. 
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Supplementary Note 4 Characterization of polarization entanglement through Bell’s test 

Bell-type inequalities provide a standard to characterize a system’s ability to generate entangled 

states. These inequalities are constructed in favor of the local hidden variable theory (LHVT), 

while the violation of them as predicted by quantum mechanics is generally observed in 

experiments. Among the various means of Bell’s tests, the Clauser–Horne–Shimony–Holt (CHSH) 

inequality serves as a practical benchmark38. 

 

Defining the Hilbert space for Alice as 𝒜𝒜  and for Bob as ℬ, we denote eigenstates for the 

measurement axes 𝛼𝛼�  and �̂�𝛽  as 𝐴𝐴𝛼𝛼  and 𝐵𝐵𝛽𝛽 , and the corresponding eigenvalues as 𝑎𝑎  and 𝑏𝑏 . An 

LHVT suggests a hidden variable 𝜆𝜆 with a probability density function 𝑝𝑝(𝜆𝜆). For measurement 

outcomes 𝑎𝑎 and 𝑏𝑏, their joint probability is 

𝑃𝑃LHV(𝑎𝑎, 𝑏𝑏|𝛼𝛼,𝛽𝛽) = �𝑃𝑃(𝑎𝑎|𝛼𝛼, 𝜆𝜆)𝑃𝑃(𝑏𝑏|𝛽𝛽, 𝜆𝜆)𝑝𝑝(𝜆𝜆)𝑑𝑑𝜆𝜆 , (S35) 

where 𝑃𝑃(𝑎𝑎|𝛼𝛼, 𝜆𝜆)  and 𝑃𝑃(𝑏𝑏|𝛽𝛽, 𝜆𝜆)  are probabilities for Alice to obtain 𝑎𝑎  and Bob to obtain 𝑏𝑏 , 

respectively. Now Alice and Bob set two analyzers with random angles of 𝛼𝛼  and 𝛽𝛽 . 𝐸𝐸(𝛼𝛼,𝛽𝛽) 

represents the correlation of the measurement: 

𝐸𝐸(𝛼𝛼,𝛽𝛽) ≡ 𝑃𝑃(𝐻𝐻,𝐻𝐻|𝛼𝛼,𝛽𝛽) + 𝑃𝑃(𝑉𝑉,𝑉𝑉|𝛼𝛼,𝛽𝛽) − 𝑃𝑃(𝐻𝐻,𝑉𝑉|𝛼𝛼,𝛽𝛽) − 𝑃𝑃(𝑉𝑉,𝐻𝐻|𝛼𝛼,𝛽𝛽). (S36) 

The Bell–CHSH inequality is then given by  

𝑆𝑆CHSH = |𝐸𝐸(𝛼𝛼,𝛽𝛽) + 𝐸𝐸(𝛼𝛼′,𝛽𝛽) − 𝐸𝐸(𝛼𝛼,𝛽𝛽′) + 𝐸𝐸(𝛼𝛼′,𝛽𝛽′)| ≤ 2, (S37) 

where 𝛼𝛼′ and 𝛽𝛽′ denote the second choices of the analyzer angles. 

 

In contrast, quantum theory predicts that 𝑆𝑆CHSH > 2 is possible with specific combinations of 

observation angles. According to quantum mechanics, we can model coincidence counts 

𝑁𝑁�(𝐻𝐻,𝐻𝐻|𝛼𝛼,𝛽𝛽) for a maximally entangled Bell state (i.e., the EPR state) as37 

𝑁𝑁�(𝐻𝐻,𝐻𝐻|𝛼𝛼,𝛽𝛽) = 𝑁𝑁0 cos2(𝛼𝛼 − 𝛽𝛽) + 𝑁𝑁1, (S38) 

where 𝑁𝑁0 is the maximum true coincidence count, and 𝑁𝑁1 represents the contribution of accidental 

coincidences. For such states, quantum theory predicts a maximum violation of Eq. (S37) at 

(0∘, 22.5∘, 45∘, 67.5∘) at the Tsirelson’s bound, 𝑆𝑆CHSH
max = 2√2. 

 

In our experimental setup, for each round of Bell’s test, we rotated 𝛼𝛼 from 0° to 180° with a step 

size of 45°. For each fixed 𝛼𝛼 , we rotated 𝛽𝛽  from 0° to 180° with a step size of 22.5°. After 
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recording the coincidence counts 𝑁𝑁(𝐻𝐻,𝐻𝐻|𝛼𝛼,𝛽𝛽) at each step with an acquisition time of 1 s and a 

coincidence detection window of 8 ns, we calculated the correlation value adapted from Eq. (S36) 

as 

𝐸𝐸(𝛼𝛼,𝛽𝛽) = 𝑁𝑁(𝐻𝐻,𝐻𝐻|𝛼𝛼,𝛽𝛽)+𝑁𝑁(𝐻𝐻,𝐻𝐻|𝛼𝛼+90°,𝛽𝛽+90°)−𝑁𝑁(𝐻𝐻,𝐻𝐻|𝛼𝛼+90°,𝛽𝛽)−𝑁𝑁(𝐻𝐻,𝐻𝐻|𝛼𝛼,𝛽𝛽+90°)
𝑁𝑁(𝐻𝐻,𝐻𝐻|𝛼𝛼,𝛽𝛽)+𝑁𝑁(𝐻𝐻,𝐻𝐻|𝛼𝛼+90°,𝛽𝛽+90°)+𝑁𝑁(𝐻𝐻,𝐻𝐻|𝛼𝛼+90°,𝛽𝛽)+𝑁𝑁(𝐻𝐻,𝐻𝐻|𝛼𝛼,𝛽𝛽+90°)

. (S39)  

The CHSH 𝑆𝑆 value was then evaluated based on the value of 𝐸𝐸 according to Eq. (S37). The results 

are shown in Supplementary Fig. 12. 

 

By performing Bell’s test, our system shows a strong violation of the CHSH inequality with 𝑆𝑆 =

2.78 ± 0.01 > 2 estimated by calculating the mean and standard error of 𝑆𝑆 values measured from 

10 rounds of Bell’s tests. This result, which violates the Bell-CHSH inequality by more than 57 

standard errors of the mean, indicates significant deviations of our result from the LHVT prediction.  
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Supplementary Note 5 Polarization entanglement-enabled ghost birefringence imaging 

The polarization entanglement of the SPDC photons in the ICE system enables ghost birefringence 

imaging. By preparing the EPR state as described in Eq. (S38) and recording the coincidence 

counts, ICE can be used to measure the transmittance 𝑇𝑇 and the birefringence properties 𝜃𝜃 and Δ 

of the object, where 𝜃𝜃  is the angle of the principal refractive index axis and Δ  is the phase 

retardation between the two refractive index axes. Here, we use Stokes vectors (𝐼𝐼,𝑄𝑄,𝑈𝑈,𝑉𝑉) and 

Mueller matrices to describe the state of polarization. The birefringence properties of the object 

can be denoted using a Mueller matrix49: 

𝑋𝑋Δ,𝜃𝜃 = �

1 0 0 0
0 cos2 2𝜃𝜃 + sin2 2𝜃𝜃 cosΔ cos 2𝜃𝜃 sin 2𝜃𝜃(1 − cosΔ) − sin 2𝜃𝜃 sinΔ
0 cos 2𝜃𝜃 sin 2𝜃𝜃(1 − cosΔ) sin2 2𝜃𝜃 + cos2 2𝜃𝜃 cosΔ cos 2𝜃𝜃 sinΔ
0 sin 2𝜃𝜃 sinΔ − cos 2𝜃𝜃 sinΔ cosΔ

� . (S40) 

Under the EPR state, we kept 𝛼𝛼 = 0° in the signal arm while rotating 𝛽𝛽 in the idler arm from 0° 

to 135°  with a step size of 45° . The corresponding polarization states of the coincidence 

measurements can be represented by the Stokes vectors 

𝑆𝑆𝛽𝛽=0° = �

𝐼𝐼0°
𝑄𝑄0°
𝑈𝑈0°
𝑉𝑉0°

� = 𝑋𝑋Δ,𝜃𝜃 �
1
1
0
0

� 𝑇𝑇, (S41) 

𝑆𝑆𝛽𝛽=45° = �

𝐼𝐼45°
𝑄𝑄45°
𝑈𝑈45°
𝑉𝑉45°

� = 𝑋𝑋Δ,𝜃𝜃 �
1
0
1
0

� 𝑇𝑇, (S42) 

𝑆𝑆𝛽𝛽=90° = �

𝐼𝐼90°
𝑄𝑄90°
𝑈𝑈90°
𝑉𝑉90°

� = 𝑋𝑋Δ,𝜃𝜃 �
1
−1
0
0

� 𝑇𝑇, (S43) 

𝑆𝑆𝛽𝛽=135° = �

𝐼𝐼135°
𝑄𝑄135°
𝑈𝑈135°
𝑉𝑉135°

� = 𝑋𝑋Δ,𝜃𝜃 �
1
0
−1
0

� 𝑇𝑇. (S44) 

Substituting Eq. (S40) into Eqs. (S41)–(S44), we have  

𝐼𝐼0° = 𝑇𝑇,𝑄𝑄0° = 𝑇𝑇(cos2 2𝜃𝜃 + sin2 2𝜃𝜃 cosΔ), 

𝐼𝐼45° = 𝑇𝑇,  𝑄𝑄45° = 𝑇𝑇 cos 2𝜃𝜃 sin 2𝜃𝜃(1 − cosΔ), 

𝐼𝐼90° = 𝑇𝑇,𝑄𝑄90° = −𝑇𝑇(cos2 2𝜃𝜃 + sin2 2𝜃𝜃 cosΔ), 

𝐼𝐼135° = 𝑇𝑇,  𝑄𝑄135° = −𝑇𝑇cos 2𝜃𝜃 sin 2𝜃𝜃(1 − cosΔ). 
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The coincidence counts for 𝛽𝛽 = 0°, 45°, 90°, 135°, therefore, can be represented as 

𝑁𝑁0° =
1
2

(𝐼𝐼0° + 𝑄𝑄0°) =
𝑇𝑇
2

(1 + cos2 2𝜃𝜃 + sin2 2𝜃𝜃 cosΔ), (S45) 

𝑁𝑁45° =
1
2

(𝐼𝐼45° + 𝑄𝑄45°) =
𝑇𝑇
2

(1 + cos 2𝜃𝜃 sin 2𝜃𝜃(1 − cosΔ)), (S46) 

𝑁𝑁90° =
1
2

(𝐼𝐼90° + 𝑄𝑄90°) =
𝑇𝑇
2

(1 − cos2 2𝜃𝜃 − sin2 2𝜃𝜃 cosΔ), (S47) 

𝑁𝑁135° =
1
2

(𝐼𝐼135° + 𝑄𝑄135°) =
𝑇𝑇
2

(1 − cos 2𝜃𝜃 sin 2𝜃𝜃(1 − cosΔ)). (S48) 

Consequently, based on Eqs. (S45)–(S48), the transmittance and birefringence properties of the 

object can be extracted from the coincidence counts: 

𝑇𝑇 =
1
2

(𝑁𝑁0° + 𝑁𝑁45° + 𝑁𝑁90° + 𝑁𝑁135°), (S49) 

𝜃𝜃 =
1
2

tan−1 �
2𝑁𝑁90°

𝑁𝑁45° − 𝑁𝑁135°
� , (S50) 

Δ = cos−1 �1 −
(𝑁𝑁45° − 𝑁𝑁135°)2 + 4𝑁𝑁90°2

𝑁𝑁90°(𝑁𝑁0° + 𝑁𝑁45° + 𝑁𝑁90° + 𝑁𝑁135°)
� . (S51) 

 

In classical imaging, the birefringence properties of the object need to be measured using incident 

photons with different polarization states50. In ICE, however, birefringence imaging can be 

performed without changing the polarization states of the photons incident on the object. When 

the polarization of the signal photons was kept constant (𝛼𝛼 = 0°) while the polarization states of 

the idler photons were varied (𝛽𝛽 = 0°, 45°, 90°, 135°), the classical images acquired with the raw 

signal counts showed no differences, unable to extract the birefringence properties of the object 

(Supplementary Fig. 13a). In comparison, the ICE images acquired with the coincidence counts 

exhibited substantial differences following Eqs. (S45)–(S48) (Supplementary Fig. 13b), which 

could be used to extract the transmittance and birefringence properties of the object 

(Supplementary Fig. 13c). One may regard this approach as quantum “ghost birefringence 

imaging”. Enabled by polarization entanglement, the ghost birefringence quantification of ICE 

demonstrates a true quantum advantage over classical imaging.  
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Supplementary Note 6 Imaging by coincidence with a classical light source. 

Classical two-photon coincidence imaging can be achieved when the spatially entangled source is 

replaced with a classical pulse source39. We implemented such imaging as shown in 

Supplementary Fig. 15, where a 635-nm CW laser (MLL-III-635-100mW, CNI Laser) was 

modulated at 4 kHz by a mechanical chopper (MC1F60, Thorlabs). The modulated beam was split 

by a beam splitter (BS013, Thorlabs) and sent to the signal and idler arms of the ICE system in 

Fig. 1, where the polarization selectors (HWP and PBS) were removed. The images formed with 

the raw signal counts using the quantum and classical sources are shown in Supplementary Figs. 

16a and b, respectively. For a fair comparison, we used a neutral density filter to attenuate the 

classical beam such that it provided the same photon flux to the object as that of the SPDC signal 

beam (~19 kHz at maximum transmittance). Because the SPDC beam contained more spatial 

modes than the classical beam, the raw signal image (i.e., the classical image) generated with the 

quantum source exhibited a lower spatial resolution than the one generated with the classical 

source. 

 

Using the quantum source, the ICE image in Supplementary Fig. 16c showed a maximum 

coincidence count rate at 485 Hz with an SNR of 22. In comparison, using the classical source, the 

ICE image in Supplementary Fig. 16d exhibited a maximum coincidence count rate at 16 Hz with 

an SNR of 4, which was 5.5 times lower than the SNR from the quantum source. Therefore, 

whereas it is possible to use classical correlation to generate ICE images, the SNR of the image is 

substantially lower than that generated with a spatially entangled quantum source. Consequently, 

to generate ICE images with the same SNR, the object needs to be illuminated with a classical 

source that is 30 times stronger than that of a quantum source, which could cause damage to 

photosensitive biological samples. Moreover, classical correlation is incompatible with either the 

sub-shot-noise algorithms (Supplementary Note 1), which require a spatially entangled quantum 

source, or the ghost birefringence quantification that is enabled by polarization entanglement 

(Supplementary Note 5). Therefore, the quantum correlation of hyperentangled SPDC photons in 

ICE is advantageous over classical correlation, especially for imaging photosensitive biological 

samples.  
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Supplementary Note 7 Comparison of ICE, GI, and CPI. 

Here, we compare ICE (Supplementary Fig. 17a) with two existing quantum imaging methods. 

Quantum ghost imaging (GI) utilizes spatially entangled photons to record an image of an object 

using photons that have not interacted with the object40. A typical ghost imaging setup uses 

entangled SPDC photons generated by a nonlinear medium, e.g., a BBO crystal, and exploits the 

spatial correlations between the positions of the photon pairs in the signal and idler arms 

(Supplementary Fig. 17b). The signal photons interact with the object and is detected by a non-

spatially resolving bucket detector. The idler photons are detected by a multi-pixel camera, which, 

upon coincidence detection of signal and idler photons, provides a ghost image of the object. It is 

noted that neither signal nor idler beams alone contain enough information to reconstruct an image 

of the object. However, the spatial entanglement between the signal and idler photons can be 

utilized to extract the image. 

 

As an extension of GI, correlation plenoptic imaging (CPI) is another quantum imaging method 

that utilizes spatial correlations of photon pairs41. Beyond the position correlation utilized in GI, 

CPI also exploits the momentum correlation of the photon pairs, capturing the light field (position 

and direction of the light) emanating from the object, thus allowing refocusing, DOF extension, 

and 3D visualization. Unlike GI, which requires a bucket detector and a camera, CPI utilizes two 

well-aligned multi-pixel cameras to simultaneously record the position and momentum of the 

photon pairs. Thus far, CPI has only been demonstrated experimentally with chaotic light51. 

Although achieving CPI with entangled SPDC photons has been proved theoretically52, it has not 

been demonstrated experimentally. A theoretical framework of CPI with entangled photons adopts 

a multi-pixel camera in the idler arm to record the positions of the object, which, upon coincidence 

detection with the camera in the signal arm, provides a ghost image of the object (Supplementary 

Fig. 17c). Additionally, through a lens that conjugates the BBO crystal and the camera in the signal 

arm, the momentum of the photons at each pixel of the object is recorded. The simultaneous 

recording of the position and momentum of the spatially entangled photons enables the 

reconstruction of a plenoptic image of the object. 

 

Despite the similarity in using entangled photon pairs and coincidence detection for imaging, ICE 

is fundamentally different from GI or CPI (Supplementary Fig. 17). First, ICE directly images the 
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object by focusing the SPDC beam onto the object and recording the coincidence of two single-

pixel detectors (SPCMs) while raster scanning the object. The raster scanning extends the 

resolvable pixel counts indefinitely, enabling quantum imaging over a large FOV. In comparison, 

both GI and CPI provide indirect ghost images of the object by triggering a multi-pixel camera 

using either a bucket detector or another camera. Because the multi-pixel cameras have a limited 

number of resolvable pixel counts, the FOVs of GI and CPI are limited. Second, ICE provides 

spatial resolution of the object, so it is capable of classically imaging the object using the signal 

arm alone. GI and CPI, however, do not provide spatial resolution of the object, and hence cannot 

image the object by only using the signal arm. Third, owing to the focusing and single-pixel 

detection of the SPDC beam, ICE measures substantially more spatial modes per pixel than GI and 

CPI, where the modes of the SPDC beam are evenly distributed across the multi-pixel cameras. 

The larger number of spatial modes per pixel leads to a higher SNR of ICE over GI or CPI under 

the same photon flux. Fourth, whereas ICE, GI, and CPI all utilize only spatially entangled photon 

pairs generated from BBO crystals, ICE also exploits the polarization entanglement of the photon 

pairs for ghost birefringence imaging of the object (Supplementary Note 5). 
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Supplementary Fig. 1 Illustration of the CoV algorithm. 

Each pixel 𝒓𝒓 from the image stacks 𝑁𝑁𝑠𝑠(𝒓𝒓, 𝑡𝑡) and 𝑁𝑁𝑖𝑖(𝒓𝒓, 𝑡𝑡) form two time sequences, and their 

temporal covariance and variance are computed to generate 𝑘𝑘∗(𝒓𝒓) using Eq. (S7). The 𝑘𝑘∗(𝒓𝒓) 

image is used in the CoV algorithm to form the sub-shot-noise image 𝑁𝑁𝑠𝑠SSN(𝒓𝒓) using Eq. (S8). 
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Supplementary Fig. 2 Illustration of the s-CoV algorithm. 

The images 𝑁𝑁𝑠𝑠(𝒓𝒓) and 𝑁𝑁𝑖𝑖(𝒓𝒓) are divided into 𝐿𝐿 subset image pairs according to the pixel values in 

the 𝑁𝑁𝑠𝑠 image. For each image pair 𝑁𝑁𝑠𝑠𝑙𝑙 and 𝑁𝑁𝑖𝑖𝑙𝑙, the 𝑘𝑘𝑙𝑙,∗ value is computed through Eq. (S10). The 

same procedure is repeated for all image pairs to form the 𝑘𝑘∗(𝒓𝒓) image, which is used in the s-

CoV algorithm to form the sub-shot-noise image 𝑁𝑁𝑠𝑠SSN(𝒓𝒓) using Eq. (S12). 
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Supplementary Fig. 3 SSN signal retrieval simulations. 

a, Schematics of the simulated setup. 1D object with transmittance 𝑇𝑇(𝑥𝑥) = 0.5 is placed in the 

signal arm. 𝑁𝑁𝑠𝑠(𝑥𝑥) and 𝑁𝑁𝑖𝑖(𝑥𝑥) denote the images measured by detectors in the signal and idler arms. 

𝜂𝜂 is the detection efficiency. The 𝑁𝑁𝑐𝑐(𝑥𝑥) image is extracted from 𝑁𝑁𝑠𝑠 and 𝑁𝑁𝑖𝑖. b, SNR enhancement 

over classical measurement (Eq. (S1)) simulated using the ratio (Eq. (S2)), optimized subtraction 

(Eq. (S4)), and CoV (Eq. (S8)) algorithms with 𝑁𝑁𝑠𝑠  and 𝑁𝑁𝑖𝑖 . The ratio of stray light and SPDC 
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photon counts is fixed to 1, and the detector efficiency 𝜂𝜂 is varied. c, Simulated SNR enhancement 

from 𝑁𝑁𝑠𝑠 and 𝑁𝑁𝑖𝑖 with the detector efficiency 𝜂𝜂 fixed at 0.7 and the ratio of stray light and SPDC 

photon counts varied. d, Simulated SNR enhancement from 𝑁𝑁𝑐𝑐 and 𝑁𝑁𝑖𝑖 with the ratio of stray light 

and SPDC photon counts fixed to 1 and the detector efficiency 𝜂𝜂  varied. e, Simulated SNR 

enhancement from 𝑁𝑁𝑐𝑐 and 𝑁𝑁𝑖𝑖 with the detector efficiency 𝜂𝜂 fixed at 0.7 and the ratio of stray light 

and SPDC photon counts varied. 
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Supplementary Fig. 4 SSN signal retrieval experiments.  

a, Signal 𝑁𝑁𝑠𝑠, idler 𝑁𝑁𝑖𝑖, and coincidence 𝑁𝑁𝑐𝑐 counts acquired from a series of trials. b, Transmittance 

of the object measured using 𝑁𝑁𝑠𝑠 directly, the ratio of 𝑁𝑁𝑠𝑠 to 𝑁𝑁𝑖𝑖, and the CoV algorithm on 𝑁𝑁𝑠𝑠 and 

𝑁𝑁𝑖𝑖. c, Histograms of the transmittance measured in b. d, Transmittance of the object measured 

using 𝑁𝑁𝑐𝑐 directly, the ratio of 𝑁𝑁𝑐𝑐 to 𝑁𝑁𝑖𝑖, and the CoV algorithm on 𝑁𝑁𝑐𝑐 and 𝑁𝑁𝑖𝑖. e, Histograms of the 

transmittance measured in d. 
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Supplementary Fig. 5 Illustration of the ICE model.  

SPCM, single photon counting module. 𝒓𝒓0,𝑠𝑠 , signal photon position on the source. 𝒓𝒓0,𝑖𝑖 , idler 

photon position on the source. 𝐷𝐷𝑠𝑠, 𝐷𝐷𝑖𝑖, detectors. 𝑡𝑡�𝒓𝒓1,𝑠𝑠�, amplitude transmission coefficient of the 

object. 𝒓𝒓1,𝑠𝑠 , the position on the object. 𝒓𝒓2,𝑠𝑠  and 𝒓𝒓2,𝑖𝑖 , the positions on the detectors 𝐷𝐷𝑠𝑠  and 𝐷𝐷𝑖𝑖 , 

respectively. 
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Supplementary Fig. 6 ICE with true and accidental coincidences. 

Resolution versus z measured with true coincidences (a) and accidental coincidences (b). Dots 

represent experimental measurements. Solid and dash-dotted lines denote fits. The ICE 

measurements require the coincidence window to be 8 ns. For the accidental ICE measurements, 

the coincidence window was set to 400 ns to allow accidental coincidences. The results are 

explained in Supplementary Note 3. 
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Supplementary Fig. 7 Characterization of horizontal (𝒙𝒙) and vertical (𝒚𝒚) beam widths of 

classical imaging and ICE.  

ESFs were acquired by scanning a sharp edge to block the beams. The FWHMs of the LSFs 

(derivatives of the ESFs) were used to estimate the beam widths.  
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Supplementary Fig. 8 ICE of carbon fibers embedded in thick agarose. 

a, Classical and ICE images of carbon fibers embedded in agarose at different z positions. Profiles 

of the yellow dotted lines are plotted in the closeups. b, Average of the stacks in a. Norm., 

normalized. Scale bars, 100 µm. 
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Supplementary Fig. 9 ICE of a mouse brain slice.  

a,b, Classical (a) and ICE (b) images of a hematoxylin and eosin (H&E) stained mouse brain slice. 

ANcr, cerebellar hemisphere ansiform lobule crus; arb, arbor vitae; CENT, cerebellar vermis 

central lobule; CUL, cerebellar vermis culmen; FL, cerebellar hemisphere flocculus; GRN, 

gigantocellular reticular nucleus; PFL, cerebellar hemisphere paraflocculus; SIM, cerebellar 

hemisphere simple lobule. c, Regions of interest (ROIs) denoted by the cyan rectangles in a and b. 

d, Profiles of the yellow dotted lines in c. e, ROIs denoted by the orange rectangles in a and b. f, 

Profiles of the yellow dotted lines in e. Norm., normalized. Scale bars, 200 µm. 
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Supplementary Fig. 10 ICE of carbon fibers in the presence of stray light. 

a, Experimental setup with the addition of a white light-emitting diode (LED) for randomly 

generated stray light. b, Classical and ICE images of carbon fibers in the presence of stray light. 

Norm., normalized. Scale bars, 100 µm. 
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Supplementary Fig. 11 ICE of a whole zebrafish.  

a, Classical and ICE images of an agarose-embedded zebrafish imaged at different z positions. 

Norm., normalized. Scale bars, 200 µm. b, Illustration of the imaging configuration, where the 

torso of the zebrafish is oblique to the imaging plane. 
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Supplementary Fig. 12 Characterization of polarization entanglement through Bell’s test. 

Coincidence counts as a function of 𝛽𝛽 acquired with 1 s integration time for 𝛼𝛼 = 0∘, 45∘, 90∘, 135∘. 

Experimental results are plotted as means ± standard errors of the means. The points marked by 

gray dashed rectangles are used to calculate the 𝑆𝑆CHSH value. The curves are fits based on Eq. (S38).  
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Supplementary Fig. 13 Ghost birefringence imaging of a whole zebrafish using signal and 

coincidence counts. 

a, Classical images acquired with raw signal counts with constant 𝛼𝛼 and variable 𝛽𝛽. b, ICE images 

acquired with coincidence counts with constant 𝛼𝛼 and variable 𝛽𝛽. c-e, Transmittance (c), principal 

refractive index axis (d), and phase retardation between the two refractive index axes (e) calculated 

using the ICE images in b. Scale bars, 200 µm 
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Supplementary Fig. 14 Potential application of ghost birefringence imaging in remote 

sensing. 

With a satellite emitting polarization-entangled photon pairs53,54, ICE can measure the 

birefringence properties of a remote object by changing the polarization states of the photons 

without interacting with the source and object. Through polarization entanglement, measuring the 

idler photon’s polarization state instantly determines the incident signal photon’s and, 

consequently, the remote object’s birefringence properties, regardless of its distance.  
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Supplementary Fig. 15 Experimental setup of “ICE” with a classical source instead. 

CW, continuous wave; NDF, neutral density filter; BS, beam splitter; BPF, band-pass filter; SPCM, 

single-photon counting module. 
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Supplementary Fig. 16 ICE images of carbon fibers acquired using entangled and classical 

sources. 

a,b, Images formed with the raw signal counts using the entangled (a) and classical (b) sources. 

c,d, Images formed with the coincidence counts using the entangled (c) and classical (d) sources. 

Scale bars, 100 µm 
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Supplementary Fig. 17 Comparison of ICE, GI, and CPI. 

a, Schematic of ICE. The object is directly imaged to the SPCM in the signal arm. An image of 

the object is retrieved by recording the coincidence of the two SPCMs while raster scanning the 

object. b, Schematic of GI. The BBO crystal is imaged to both the object and the camera. The 

bucket detector records all the photons transmitted through the object. Through coincidence 
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detection, a ghost image of the object is retrieved from the camera and triggered by the bucket 

detector. c, Schematic of CPI. The BBO crystal is imaged to the camera in the signal arm through 

the lens with a focal length of 𝑓𝑓𝑏𝑏 , where the labeled distances satisfy the thin-lens equation 

1/(𝑧𝑧𝑏𝑏 + 𝑧𝑧𝑏𝑏′ ) + 1 𝑧𝑧𝑏𝑏′′⁄ = 1 𝑓𝑓𝑏𝑏⁄ . The ghost image of the object is imaged to the camera in the idler 

arm though the lens with a focal length of 𝑓𝑓𝑎𝑎, satisfying the condition 1 (𝑧𝑧𝑎𝑎 + 𝑧𝑧𝑏𝑏)⁄ + 1 𝑧𝑧𝑏𝑏′⁄ = 1 𝑓𝑓𝑎𝑎⁄ . 

Through coincidence detection, a ghost image of the object is retrieved from the camera in the 

idler arm, triggered by the camera in the signal arm. 
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Supplementary Fig. 18 Comparison of ICE and existing quantum bioimaging modalities. 

a, Quantum image of a wasp wing in a 4 mm × 4 mm FOV7. b, Quantum image of a 3 µm × 3 µm 

section of microtubules in a fixed 3T3 cell labeled with fluorescent quantum dots8. c, Quantum 

image of the histology sample of a mouse heart in a 1 mm × 1 mm FOV9. d, Quantum image of a 

yeast cell in aqueous buffer in a 10 µm × 10 µm FOV11. e, Quantum image of parts of a bird feather 

in a 2 mm × 1 mm FOV10. f,g, Quantum images of a whole zebrafish in a 3.5 mm × 2.3 mm FOV 

(f) and a mouse brain slice in a 7 mm × 4 mm FOV (g), presented in this work.   
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Supplementary Table 1 Comparison of ICE and existing quantum bioimaging modalities 

Work Specimen Specimen 
thickness FOV Resolvable 

pixel count 
Image 

formation 
Stray light 
resilience SNR SNR� * (s-0.5) 

Ref. 7 Wasp wing 
section < 10 µm 4 × 4 mm2 2401 Widefield N/A 6 7.2 

Ref. 8 NIH 3T3 cell 
microtubules < 1 µm 3 × 3 µm2 121 Scanning N/A 12 9.5 

Ref. 9 Mouse heart 
section < 3 µm 1 × 1 mm2 784 Widefield N/A 10 22.4 

Ref. 11 Yeast cell < 10 µm 10 × 10 µm2 2500 Scanning N/A 5 11.2 

Ref. 10 Bird feather < 10 µm 2 × 1 mm2 968 Widefield Yes 13 1.6 

This 
work 

Zebrafish / 
mouse brain 

Up to 
300 µm 

Up to 
7 × 4 mm2 

Up to 
258432 Scanning Yes 40 40 

*Normalized SNR: SNR� = SNR/�Acquisition time per resolvable pixel. 
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